150 research outputs found
Gateway vectors for efficient artificial gene assembly in vitro and expression in yeast Saccharomyces cerevisiae
Peer reviewedPublisher PD
Preventing β-amyloid fibrillization and deposition: β-sheet breakers and pathological chaperone inhibitors
Central to the pathogenesis of Alzheimer's disease (AD) is the conversion of normal, soluble β-amyloid (sAβ) to oligomeric, fibrillar Aβ. This process of conformational conversion can be influenced by interactions with other proteins that can stabilize the disease-associated state; these proteins have been termed 'pathological chaperones'. In a number of AD models, intervention that block soluble Aβ aggregation, including β-sheet breakers, and compounds that block interactions with pathological chaperones, have been shown to be highly effective. When combined with early pathology detection, these therapeutic strategies hold great promise as effective and relatively toxicity free methods of preventing AD related pathology
Controlling Curie temperature in (Ga,Ms)As through location of the Fermi level within the impurity band
The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied
material for prototype applications in semiconductor spintronics. Because
ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has
direct and crucial bearing on its Curie temperature TC. It is vigorously
debated, however, whether holes in (Ga,Mn)As reside in the valence band or in
an impurity band. In this paper we combine results of channeling experiments,
which measure the concentrations both of Mn ions and of holes relevant to the
ferromagnetic order, with magnetization, transport, and magneto-optical data to
address this issue. Taken together, these measurements provide strong evidence
that it is the location of the Fermi level within the impurity band that
determines TC through determining the degree of hole localization. This finding
differs drastically from the often accepted view that TC is controlled by
valence band holes, thus opening new avenues for achieving higher values of TC.Comment: 5 figures, supplementary material include
FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells
Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours
Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum
10.1038/srep02236Scientific Reports3
Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases
The purpose of this study was to determine the image quality and diagnostic accuracy of three-dimensional (3D) unenhanced steady state free precession (SSFP) magnetic resonance angiography (MRA) for the evaluation of thoracic aortic diseases.
Fifty consecutive patients with known or suspected thoracic aortic disease underwent free-breathing ECG-gated unenhanced SSFP MRA with non-selective radiofrequency excitation and contrast-enhanced (CE) MRA of the thorax at 1.5 T. Two readers independently evaluated the two datasets for image quality in the aortic root, ascending aorta, aortic arch, descending aorta, and origins of supra-aortic arteries, and for abnormal findings. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined for both datasets. Sensitivity, specificity, and diagnostic accuracy of unenhanced SSFP MRA for the diagnosis of aortic abnormalities were determined.
Abnormal aortic findings, including aneurysm (n = 47), coarctation (n = 14), dissection (n = 12), aortic graft (n = 6), intramural hematoma (n = 11), mural thrombus in the aortic arch (n = 1), and penetrating aortic ulcer (n = 9), were confidently detected on both datasets. Sensitivity, specificity, and diagnostic accuracy of SSFP MRA for the detection of aortic disease were 100% with CE-MRA serving as a reference standard. Image quality of the aortic root was significantly higher on SSFP MRA (P < 0.001) with no significant difference for other aortic segments (P > 0.05). SNR and CNR values were higher for all segments on SSFP MRA (P < 0.01).
Our results suggest that free-breathing navigator-gated 3D SSFP MRA with non-selective radiofrequency excitation is a promising technique that provides high image quality and diagnostic accuracy for the assessment of thoracic aortic disease without the need for intravenous contrast material
Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni
This document is the Accepted Manuscript version of the following article: Thomas Siegert, et al, ‘Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni’, Nature: International Journal of Science, Vol. 531: 341-343, March 2016, DOI: https://doi.org/10.1038/nature16978. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Microquasars1, 2, 3, 4 are stellar-mass black holes accreting matter from a companion star5 and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 106 to 1010 solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares6. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron–positron plasma. Transient high-energy spectral features have been reported in two objects7, 8, but their positron interpretation9 remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity10. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron–positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy11. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.Peer reviewe
Biochemical Properties of Highly Neuroinvasive Prion Strains
Infectious prions propagate from peripheral entry sites into the central nervous system (CNS), where they cause progressive neurodegeneration that ultimately leads to death. Yet the pathogenesis of prion disease can vary dramatically depending on the strain, or conformational variant of the aberrantly folded and aggregated protein, PrPSc. Although most prion strains invade the CNS, some prion strains cannot gain entry and do not cause clinical signs of disease. The conformational basis for this remarkable variation in the pathogenesis among strains is unclear. Using mouse-adapted prion strains, here we show that highly neuroinvasive prion strains primarily form diffuse aggregates in brain and are noncongophilic, conformationally unstable in denaturing conditions, and lead to rapidly lethal disease. These neuroinvasive strains efficiently generate PrPSc over short incubation periods. In contrast, the weakly neuroinvasive prion strains form large fibrillary plaques and are stable, congophilic, and inefficiently generate PrPSc over long incubation periods. Overall, these results indicate that the most neuroinvasive prion strains are also the least stable, and support the concept that the efficient replication and unstable nature of the most rapidly converting prions may be a feature linked to their efficient spread into the CNS
Receptor Sorting within Endosomal Trafficking Pathway Is Facilitated by Dynamic Actin Filaments
Early endosomes (EEs) are known to be a sorting station for internalized
molecules destined for degradation, recycling, or other intracellular
organelles. Segregation is an essential step in such sorting, but the molecular
mechanism of this process remains to be elucidated. Here, we show that actin is
required for efficient recycling and endosomal maturation by producing a motile
force. Perturbation of actin dynamics by drugs induced a few enlarged EEs
containing several degradative vacuoles and also interfered with their
transporting ability. Actin repolymerization induced by washout of the drug
caused the vacuoles to dissociate and individually translocate toward the
perinuclear region. We further elucidated that cortactin, an actin-nucleating
factor, was required for transporting contents from within EEs. Actin filaments
regulated by cortactin may provide a motile force for efficient sorting within
early endosomes. These data suggest that actin filaments coordinate with
microtubules to mediate segregation in EEs
Tectonic evolution of the southern margin of the Amazonian craton in the late Mesoproterozoic based on field relationships and zircon U-Pb geochronology
New U-Pb zircon geochronological data integrated with field relationships and an airborne geophysical survey suggest that the Nova Brasilândia and Aguapeí belts are part of the same monocyclic, metaigneous and metasedimentary belt formed in the late Mesoproterozoic (1150 Ma-1110 Ma). This geological history is very similar to the within-plate origin of the Sunsás belt, in eastern Bolivia. Thus, we propose that the Nova Brasilândia, Aguapeí and Sunsás belts represent a unique geotectonic unit (here termed the Western Amazon belt) that became amalgamated at the end of the Mesoproterozoic and originated through the reactivation of a paleo-suture (Guaporé suture zone) in an intracontinental rift environment. Therefore, its geological history involves a short, complete Wilson cycle of ca. 40 Ma. Globally, this tectonic evolution may be related with the final breakup of the supercontinent Columbia. Mafic rocks and trondhjemites in the northernmost portion of the belt yielded U-Pb zircon ages ca. 1110 Ma, which dates the high-grade metamorphism and the closure of the rift. This indicates that the breakup of supercontinent Columbia was followed in short sequence by the assembly of supercontinent Rodinia at ca. 1.1-1.0 Ga and that the Western Amazon belt was formed during the accretion of the Arequipa-Antofalla basement to the Amazonian craton
- …