119 research outputs found

    Low availability of carnitine precursors as a possible reason for the diminished plasma carnitine concentrations in pregnant women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been shown that plasma carnitine concentrations decrease markedly during gestation. A recent study performed with a low number of subjects suggested that this effect could be due to a low iron status which leads to an impairment of carnitine synthesis. The present study aimed to confirm this finding in a greater number of subjects. It was moreover intended to find out whether low carnitine concentrations during pregnancy could be due to a reduced availability of precursors of carnitine synthesis, namely trimethyllysine (TML) and γ-butyrobetaine (BB).</p> <p>Methods</p> <p>Blood samples of 79 healthy pregnant women collected at delivery were used for this study.</p> <p>Results</p> <p>There was only a weak, non-significant (P > 0.05), correlation between plasma concentration of ferritin and those of free and total carnitine. There was no correlation between other parameters of iron status (plasma iron concentration, hemoglobin, MCV, MCH) and plasma concentration of free and total carnitine. There were, however, significant (P < 0.05) positive correlations between concentrations of TML and BB and those of free and total carnitine in plasma.</p> <p>Conclusions</p> <p>The results of this study suggest that an insufficient iron status is not the reason for low plasma carnitine concentrations observed in pregnant women. It is rather indicated that low plasma carnitine concentrations are caused by a low availability of precursors for carnitine synthesis during gestation.</p

    Tetradecylthioacetic Acid Increases Hepatic Mitochondrial β-Oxidation and Alters Fatty Acid Composition in a Mouse Model of Chronic Inflammation

    Get PDF
    The administration of tetradecylthioacetic acid (TTA), a hypolipidemic and anti-inflammatory modified bioactive fatty acid, has in several experiments based on high fat diets been shown to improve lipid transport and utilization. It was suggested that increased mitochondrial and peroxisomal fatty acid oxidation in the liver of Wistar rats results in reduced plasma triacylglycerol (TAG) levels. Here we assessed the potential of TTA to prevent tumor necrosis factor (TNF) α-induced lipid modifications in human TNFα (hTNFα) transgenic mice. These mice are characterized by reduced β-oxidation and changed fatty acid composition in the liver. The effect of dietary treatment with TTA on persistent, low-grade hTNFα overexpression in mice showed a beneficial effect through decreasing TAG plasma concentrations and positively affecting saturated and monounsaturated fatty acid proportions in the liver, leading to an increased anti-inflammatory fatty acid index in this group. We also observed an increase of mitochondrial β-oxidation in the livers of TTA treated mice. Concomitantly, there were enhanced plasma levels of carnitine, acetyl carnitine, propionyl carnitine, and octanoyl carnitine, no changed levels in trimethyllysine and palmitoyl carnitine, and a decreased level of the precursor for carnitine, called γ-butyrobetaine. Nevertheless, TTA administration led to increased hepatic TAG levels that warrant further investigations to ascertain that TTA may be a promising candidate for use in the amelioration of inflammatory disorders characterized by changed lipid metabolism due to raised TNFα levels

    Iron Accumulation with Age, Oxidative Stress and Functional Decline

    Get PDF
    Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength) in male Fischer 344 X Brown Norway rats fed ad libitum (AL) or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age) at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR) rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects

    Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron overload is associated with liver toxicity, cirrhosis, and hepatocellular carcinoma in humans. While most iron circulates in blood as transferrin-bound iron, non-transferrin-bound iron (NTBI) also becomes elevated and contributes to toxicity in the setting of iron overload. The mechanism for iron-related carcinogenesis is not well understood, in part due to a shortage of suitable experimental models. The primary aim of this study was to investigate NTBI-related hepatic carcinogenesis using T51B rat liver epithelial cells, a non-neoplastic cell line previously developed for carcinogenicity and tumor promotion studies.</p> <p>Methods</p> <p>T51B cells were loaded with iron by repeated addition of ferric ammonium citrate (FAC) to the culture medium. Iron internalization was documented by chemical assay, ferritin induction, and loss of calcein fluorescence. Proliferative effects were determined by cell count, toxicity was determined by MTT assay, and neoplastic transformation was assessed by measuring colony formation in soft agar. Cyclin levels were measured by western blot.</p> <p>Results</p> <p>T51B cells readily internalized NTBI given as FAC. Within 1 week of treatment at 200 μM, there were significant but well-tolerated toxic effects including a decrease in cell proliferation (30% decrease, p < 0.01). FAC alone induced little or no colony formation in soft agar. In contrast, FAC addition to cells previously initiated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in a concentration dependent increase in colony formation. This was first detected at 12 weeks of FAC treatment and increased at longer times. At 16 weeks, colony formation increased more than 10 fold in cells treated with 200 μM FAC (p < 0.001). The iron chelator desferoxamine reduced both iron uptake and colony formation. Cells cultured with 200 μM FAC showed decreased cyclin D1, decreased cyclin A, and increased cyclin B1.</p> <p>Conclusion</p> <p>These results establish NTBI as a tumor promoter in T51B rat liver epithelial cells. Changes in cyclin proteins suggest cell cycle disregulation contributes to tumor promotion by NTBI in this liver cell model.</p
    corecore