257 research outputs found

    Charcoal does not change the decomposition rate of mixed litters in a mineral cambisol: a controlled conditions study

    Full text link
    It has been recently shown that the presence of charcoal might promote humus decomposition in the soil. We investigated the decomposition rate of charcoal and litters of different biochemical quality mixed together in a soil incubation under controlled conditions. Despite the large range of organic substrate quality used in this study, we did not find any difference in the decomposition between the average of two individual substrates decomposing separately and the same substrates mixed together. We concluded that charcoal does not always promote other organic matter decomposition and that its particular effect might depend on various factors, for example, soil properties

    Use of local anaesthetics and adjuncts for spinal and epidural anaesthesia and analgesia at German and Austrian University Hospitals: an online survey to assess current standard practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present anonymous multicenter online survey was conducted to evaluate the application of regional anaesthesia techniques as well as the used local anaesthetics and adjuncts at German and Austrian university hospitals.</p> <p>Methods</p> <p>39 university hospitals were requested to fill in an online questionnaire, to determine the kind of regional anaesthesia and preferred drugs in urology, obstetrics and gynaecology.</p> <p>Results</p> <p>33 hospitals responded. No regional anaesthesia is conducted in 47% of the minor gynaecological and 44% of the urological operations; plain bupivacaine 0.5% is used in 38% and 47% respectively. In transurethral resections of the prostate and bladder no regional anaesthesia is used in 3% of the responding hospitals, whereas plain bupivacaine 0.5% is used in more than 90%. Regional anaesthesia is only used in selected major gynaecological and urological operations. On the contrary to the smaller operations, the survey revealed a large variety of used drugs and mixtures. Almost 80% prefer plain bupivacaine or ropivacaine 0.5% in spinal anaesthesia in caesarean section. Similarly to the use of drugs in major urological and gynaecological operations a wide range of drugs and adjuncts is used in epidural anaesthesia in caesarean section and spontaneous delivery.</p> <p>Conclusions</p> <p>Our results indicate a certain agreement in short operations in spinal anaesthesia. By contrast, a large variety concerning the anaesthesiological approach in larger operations as well as in epidural analgesia in obstetrics could be revealed, the causes of which are assumed to be primarily rooted in particular departmental structures.</p

    The ethics of digital well-being: a multidisciplinary perspective

    Get PDF
    This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being

    Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    Get PDF
    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration

    Modelling the regulation of telomere length: the effects of telomerase and G-quadruplex stabilising drugs

    Get PDF
    Telomeres are guanine-rich sequences at the end of chromosomes which shorten during each replication event and trigger cell cycle arrest and/or controlled death (apoptosis) when reaching a threshold length. The enzyme telomerase replenishes the ends of telomeres and thus prolongs the life span of cells, but also causes cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are a potential anticancer treatment which work by changing the molecular structure of telomeres to inhibit the activity of telomerase. We investigate the dynamics of telomere length in different conformational states, namely t-loops, G-quadruplex structures and those being elongated by telomerase. By formulating deterministic differential equation models we study the effects of various levels of both telomerase and concentrations of a G4-stabilising drug on the distribution of telomere lengths, and analyse how these effects evolve over large numbers of cell generations. As well as calculating numerical solutions, we use quasicontinuum methods to approximate the behaviour of the system over time, and predict the shape of the telomere length distribution. We find those telomerase and G4-concentrations where telomere length maintenance is successfully regulated. Excessively high levels of telomerase lead to continuous telomere lengthening, whereas large concentrations of the drug lead to progressive telomere erosion. Furthermore, our models predict a positively skewed distribution of telomere lengths, that is, telomeres accumulate over lengths shorter than the mean telomere length at equilibrium. Our model results for telomere length distributions of telomerase-positive cells in drug-free assays are in good agreement with the limited amount of experimental data available

    Fission Yeast Tel1ATM and Rad3ATR Promote Telomere Protection and Telomerase Recruitment

    Get PDF
    The checkpoint kinases ATM and ATR are redundantly required for maintenance of stable telomeres in diverse organisms, including budding and fission yeasts, Arabidopsis, Drosophila, and mammals. However, the molecular basis for telomere instability in cells lacking ATM and ATR has not yet been elucidated fully in organisms that utilize both the telomere protection complex shelterin and telomerase to maintain telomeres, such as fission yeast and humans. Here, we demonstrate by quantitative chromatin immunoprecipitation (ChIP) assays that simultaneous loss of Tel1ATM and Rad3ATR kinases leads to a defect in recruitment of telomerase to telomeres, reduced binding of the shelterin complex subunits Ccq1 and Tpz1, and increased binding of RPA and homologous recombination repair factors to telomeres. Moreover, we show that interaction between Tpz1-Ccq1 and telomerase, thought to be important for telomerase recruitment to telomeres, is disrupted in tel1Δ rad3Δ cells. Thus, Tel1ATM and Rad3ATR are redundantly required for both protection of telomeres against recombination and promotion of telomerase recruitment. Based on our current findings, we propose the existence of a regulatory loop between Tel1ATM/Rad3ATR kinases and Tpz1-Ccq1 to ensure proper protection and maintenance of telomeres in fission yeast

    REST Controls Self-Renewal and Tumorigenic Competence of Human Glioblastoma Cells

    Get PDF
    The Repressor Element 1 Silencing Transcription factor (REST/NRSF) is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM) specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets

    Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches

    Get PDF
    Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB) and Posterior Weighted Averaging (PWA) methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC) algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics
    • …
    corecore