173 research outputs found

    The SR-BI Partner PDZK1 Facilitates Hepatitis C Virus Entry

    Get PDF
    Entry of hepatitis C virus (HCV) into hepatocytes is a multi-step process that involves a number of different host cell factors. Following initial engagement with glycosaminoglycans and the low-density lipoprotein receptor, it is thought that HCV entry proceeds via interactions with the tetraspanin CD81, scavenger receptor class B type I (SR-BI), and the tight-junction proteins claudin-1 (CLDN1) and occludin (OCLN), culminating in clathrin-dependent endocytosis of HCV particles and their pH-dependent fusion with endosomal membranes. Physiologically, SR-BI is the major receptor for high-density lipoproteins (HDL) in the liver, where its expression is primarily controlled at the post-transcriptional level by its interaction with the scaffold protein PDZK1. However, the importance of interaction with PDZK1 to the involvement of SR-BI in HCV entry is unclear. Here we demonstrate that stable shRNA-knockdown of PDZK1 expression in human hepatoma cells significantly reduces their susceptibility to HCV infection, and that this effect can be reversed by overexpression of full length PDZK1 but not the first PDZ domain of PDZK1 alone. Furthermore, we found that overexpression of a green fluorescent protein chimera of the cytoplasmic carboxy-terminus of SR-BI (amino acids 479–509) in Huh-7 cells resulted in its interaction with PDZK1 and a reduced susceptibility to HCV infection. In contrast a similar chimera lacking the final amino acid of SR-BI (amino acids 479–508) failed to interact with PDZK1 and did not inhibit HCV infection. Taken together these results indicate an indirect involvement of PDZK1 in HCV entry via its ability to interact with SR-BI and enhance its activity as an HCV entry factor

    The use of a bayesian hierarchy to develop and validate a co-morbidity score to predict mortality for linked primary and secondary care data from the NHS in England

    Get PDF
    Background: We have assessed whether the linkage between routine primary and secondary care records provided an opportunity to develop an improved population based co-morbidity score with the combined information on co-morbidities from both health care settings. Methods: We extracted all people older than 20 years at the start of 2005 within the linkage between the Hospital Episodes Statistics, Clinical Practice Research Datalink, and Office for National Statistics death register in England. A random 50% sample was used to identify relevant diagnostic codes using a Bayesian hierarchy to share information between similar Read and ICD 10 code groupings. Internal validation of the score was performed in the remaining 50% and discrimination was assessed using Harrell’s C statistic. Comparisons were made over time, age, and consultation rate with the Charlson and Elixhauser indexes. Results: 657,264 people were followed up from the 1st January 2005. 98 groupings of codes were derived from the Bayesian hierarchy, and 37 had an adjusted weighting of greater than zero in the Cox proportional hazards model. 11 of these groupings had a different weighting dependent on whether they were coded from hospital or primary care. The C statistic reduced from 0.88 (95% confidence interval 0.88–0.88) in the first year of follow up, to 0.85 (0.85–0.85) including all 5 years. When we stratified the linked score by consultation rate the association with mortality remained consistent, but there was a significant interaction with age, with improved discrimination and fit in those under 50 years old (C=0.85, 0.83–0.87) compared to the Charlson (C=0.79, 0.77–0.82) or Elixhauser index (C=0.81, 0.79–0.83). Conclusions: The use of linked population based primary and secondary care data developed a co-morbidity score that had improved discrimination, particularly in younger age groups, and had a greater effect when adjusting for co-morbidity than existing scores

    The Novel Immunosuppressive Protein Kinase C Inhibitor Sotrastaurin Has No Pro-Viral Effects on the Replication Cycle of Hepatitis B or C Virus

    Get PDF
    The pan-protein kinase C (PKC) inhibitor sotrastaurin (AEB071) is a novel immunosuppressant currently in phase II trials for immunosuppression after solid organ transplantation. Besides T-cell activation, PKC affects numerous cellular processes that are potentially important for the replication of hepatitis B virus (HBV) and hepatitis C virus (HCV), major blood-borne pathogens prevalent in solid organ transplant recipients. This study uses state of the art virological assays to assess the direct, non-immune mediated effects of sotrastaurin on HBV and HCV. Most importantly, sotrastaurin had no pro-viral effect on either HBV or HCV. In the presence of high concentrations of sotrastaurin, well above those used clinically and close to levels where cytotoxic effects become detectable, there was a reduction of HCV and HBV replication. This reduction is very likely due to cytotoxic and/or anti-proliferative effects rather than direct anti-viral activity of the drug. Replication cycle stages other than genome replication such as viral cell entry and spread of HCV infection directly between adjacent cells was clearly unaffected by sotrastaurin. These data support the evaluation of sotrastaurin in HBV and/or HCV infected transplant recipients

    RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis

    Get PDF
    Hepatitis C virus (HCV) enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a siRNA library that targets 140 cellular membrane trafficking genes to identify host genes required for infectious HCV production and HCV pseudoparticle entry. This approach identified 16 host cofactors of HCV entry that function primarily in clathrin-mediated endocytosis, including components of the clathrin endocytosis machinery, actin polymerization, receptor internalization and sorting, and endosomal acidification. We next developed single particle tracking analysis of highly infectious fluorescent HCV particles to examine the co-trafficking of HCV virions with cellular cofactors of endocytosis. We observe multiple, sequential interactions of HCV virions with the actin cytoskeleton, including retraction along filopodia, actin nucleation during internalization, and migration of internalized particles along actin stress fibers. HCV co-localizes with clathrin and the ubiquitin ligase c-Cbl prior to internalization. Entering HCV particles are associated with the receptor molecules CD81 and the tight junction protein, claudin-1; however, HCV-claudin-1 interactions were not restricted to Huh-7.5 cell-cell junctions. Surprisingly, HCV internalization generally occurred outside of Huh-7.5 cell-cell junctions, which may reflect the poorly polarized nature of current HCV cell culture models. Following internalization, HCV particles transport with GFP-Rab5a positive endosomes, which is consistent with trafficking to the early endosome. This study presents technical advances for imaging HCV entry, in addition to identifying new host cofactors of HCV infection, some of which may be antiviral targets

    The altered expression of α1 and β3 subunits of the gamma-aminobutyric acid A receptor is related to the hepatitis C virus infection

    Get PDF
    The modulation of the gamma-aminobutyric acid type A (GABA A) receptors activity was observed in several chronic hepatitis failures, including hepatitis C. The expression of GABA A receptor subunits α1 and β3 was detected in peripheral blood mononuclear cells (PBMCs) originated from healthy donors. The aim of the study was to evaluate if GABA A α1 and β3 expression can also be observed in PBMCs from chronic hepatitis C (CHC) patients and to evaluate a possible association between their expression and the course of hepatitis C virus (HCV) infection. GABA A α1- and β3-specific mRNAs presence and a protein expression in PBMCs from healthy donors and CHC patients were screened by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. In patients, HCV RNA was determined in sera and PBMCs. It was shown that GABA A α1 and β3 expression was significantly different in PBMCs from CHC patients and healthy donors. In comparison to healthy donors, CHC patients were found to present an increase in the expression of GABA A α1 subunit and a decrease in the expression of β3 subunit in their PBMCs. The modulation of α1 and β3 GABA A receptors subunits expression in PBMCs may be associated with ongoing or past HCV infection

    Definition of Mafa-A and -B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis)

    Get PDF
    The major histocompatibility complex (MHC) class I B gene/allelic repertoire was investigated in a pedigreed population of cynomolgus macaques of mixed Indonesian/Malaysian origin. The Mafa-B alleles detected in this cohort are mostly specific for a given geographic area, and only a small number of alleles appears to be shared with other populations. This suggests the fast evolution of Mafa-B alleles due to adaptation to new environments. In contrast to humans, the B locus in Old World monkeys displays extensive copy number variation. The Mafa-B and previously defined -A gene combinations segregate in families and thus allowed the definition of extended haplotypes. In many cases it was possible to assign a particular Mafa-I allele to one of these Mafa-A/B haplotypes as well. The presence of a large number of stable haplotypes in this cohort of animals, which was pedigreed for up to eight generations, looks promising for developing discriminative MHC typing tools that are less cumbersome. Furthermore, the discovery of 53 unreported Mafa-B sequences expands the lexicon of alleles significantly, and may help in understanding the complex organisation of the macaque B region

    Identification of Synaptic Targets of Drosophila Pumilio

    Get PDF
    Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3′UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3′UTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage
    corecore