47 research outputs found

    Claims of Potential Expansion throughout the U.S. by Invasive Python Species Are Contradicted by Ecological Niche Models

    Get PDF
    BACKGROUND: Recent reports from the United States Geological Survey (USGS) suggested that invasive Burmese pythons in the Everglades may quickly spread into many parts of the U.S. due to putative climatic suitability. Additionally, projected trends of global warming were predicted to significantly increase suitable habitat and promote range expansion by these snakes. However, the ecological limitations of the Burmese python are not known and the possible effects of global warming on the potential expansion of the species are also unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that a predicted continental expansion is unlikely based on the ecology of the organism and the climate of the U.S. Our ecological niche models, which include variables representing climatic extremes as well as averages, indicate that the only suitable habitat in the U.S. for Burmese pythons presently occurs in southern Florida and in extreme southern Texas. Models based on the current distribution of the snake predict suitable habitat in essentially the only region in which the snakes are found in the U.S. Future climate models based on global warming forecasts actually indicate a significant contraction in suitable habitat for Burmese pythons in the U.S. as well as in their native range. CONCLUSIONS/SIGNIFICANCE: The Burmese python is strongly limited to the small area of suitable environmental conditions in the United States it currently inhabits due to the ecological niche preferences of the snake. The ability of the Burmese python to expand further into the U.S. is severely limited by ecological constraints. Global warming is predicted to significantly reduce the area of suitable habitat worldwide, underscoring the potential negative effects of climate change for many species

    A global catalog of primary reptile type specimens

    Get PDF
    We present information on primary type specimens for 13,282 species and subspecies of reptiles compiled in the Reptile Database, that is, holotypes, neotypes, lectotypes, and syntypes. These represent 99.4% of all 13,361 currently recognized taxa (11,050 species and 2311 subspecies). Type specimens of 653 taxa (4.9%) are either lost or not located, were never designated, or we did not find any information about them. 51 species are based on iconotypes. To map all types to physical GLOBAL TYPE CATALOG OF REPTILES Zootaxa 4695 (5) © 2019 Magnolia Press · 439collections we have consolidated all synonymous and ambiguous collection acronyms into an unambiguous list of 364 collections holding these primary types. The 10 largest collections possess more than 50% of all (primary) reptile types, the 36 largest collections possess more than 10,000 types and the largest 73 collections possess over 90% of all types. Of the 364 collections, 107 hold type specimens of only 1 species or subspecies. Dozens of types are still in private collections. In order to increase their utility, we recommend that the description of type specimens be supplemented with data from high-resolution images and CT-scans, and clear links to tissue samples and DNA sequence data (when available). We request members of the herpetological community provide us with any missing type information to complete the list.Copyright © 2019 Magnolia Press. This is an open access article .icensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0. The attached file is the published pdf.NHM Repositor

    Continuous Multi-Parameter Heart Rate Variability Analysis Heralds Onset of Sepsis in Adults

    Get PDF
    BACKGROUND: Early diagnosis of sepsis enables timely resuscitation and antibiotics and prevents subsequent morbidity and mortality. Clinical approaches relying on point-in-time analysis of vital signs or lab values are often insensitive, non-specific and late diagnostic markers of sepsis. Exploring otherwise hidden information within intervals-in-time, heart rate variability (HRV) has been documented to be both altered in the presence of sepsis, and correlated with its severity. We hypothesized that by continuously tracking individual patient HRV over time in patients as they develop sepsis, we would demonstrate reduced HRV in association with the onset of sepsis. METHODOLOGY/PRINCIPAL FINDINGS: We monitored heart rate continuously in adult bone marrow transplant (BMT) patients (n = 21) beginning a day before their BMT and continuing until recovery or withdrawal (12+/-4 days). We characterized HRV continuously over time with a panel of time, frequency, complexity, and scale-invariant domain techniques. We defined baseline HRV as mean variability for the first 24 h of monitoring and studied individual and population average percentage change (from baseline) over time in diverse HRV metrics, in comparison with the time of clinical diagnosis and treatment of sepsis (defined as systemic inflammatory response syndrome along with clinically suspected infection requiring treatment). Of the 21 patients enrolled, 4 patients withdrew, leaving 17 patients who completed the study. Fourteen patients developed sepsis requiring antibiotic therapy, whereas 3 did not. On average, for 12 out of 14 infected patients, a significant (25%) reduction prior to the clinical diagnosis and treatment of sepsis was observed in standard deviation, root mean square successive difference, sample and multiscale entropy, fast Fourier transform, detrended fluctuation analysis, and wavelet variability metrics. For infected patients (n = 14), wavelet HRV demonstrated a 25% drop from baseline 35 h prior to sepsis on average. For 3 out of 3 non-infected patients, all measures, except root mean square successive difference and entropy, showed no significant reduction. Significant correlation was present amongst these HRV metrics for the entire population. CONCLUSIONS/SIGNIFICANCE: Continuous HRV monitoring is feasible in ambulatory patients, demonstrates significant HRV alteration in individual patients in association with, and prior to clinical diagnosis and treatment of sepsis, and merits further investigation as a means of providing early warning of sepsis

    Comparative Skull Morphology of Uropeltid Snakes (Alethinophidia: Uropeltidae) with Special Reference to Disarticulated Elements and Variation

    Get PDF
    Uropeltids form a diverse clade of highly derived, fossorial snakes that, because of their phylogenetic position among other alethinophidian lineages, may play a key role in understanding the early evolution of cranial morphology in snakes. We include detailed osteological descriptions of crania and mandibles for eight uropeltid species from three nominal genera (Uropeltis, Rhinophis, and Brachyophidium) and emphasize disarticulated elements and the impact of intraspecific variation on previously proposed morphological characters used for phylogenetic analysis. Preliminary analysis of phylogenetic relationships strongly supports a clade composed exclusively of species of Plectrurus, Uropeltis, and Rhinophis. However, monophyly of each of those genera and Melanophidium is not upheld. There is moderate support that Sri Lankan species (e.g., Rhinophis and Uropeltis melanogaster) are monophyletic with respect to Indian uropeltids. Previously proposed characters that are phylogenetically informative include the shape of the nasals, length of the occipital condyle, level of development of the posteroventral process of the dentary, and participation of the parietal in the optic foramen. Additionally, thirty new features that may be systematically informative are identified and described, but were not verified for their utility. Such verification must await availability of additional disarticulated cranial material from a larger sample of taxa. All characters require further testing through increased focus on sources and patterns of intraspecific variation, inclusion of broader taxonomic samples in comparative studies, and exploration of skeletal development, sexual dimorphism, and biogeographic patterns. Additionally, trends in the relative enlargement of the sensory capsules, reduction in cranial ossification and dentition, fusion of elements, and the appearance of novel morphological conditions, such as the structure and location of the suspensorium, may be related to fossoriality and miniaturization in some uropeltid taxa, and may complicate analysis of relationships within Uropeltidae and among alethinophidian snakes

    Swarming on Random Graphs II

    Full text link
    We consider an individual-based model where agents interact over a random network via first-order dynamics that involve both attraction and repulsion. In the case of all-to-all coupling of agents in Rd this system has a lowest energy state in which an equal number of agents occupy the vertices of the d-dimensional simplex. The purpose of this paper is to sharpen and extend a line of work initiated in [56], which studies the behavior of this model when the interaction between the N agents occurs according to an Erdős-Rényi random graph G(N, p) instead of all-to-all coupling. In particular, we study the effect of randomness on the stability of these simplicial solutions, and provide rigorous results to demonstrate that stability of these solutions persists for probabilities greater than Np = O(logN). In other words, only a relatively small number of interactions are required to maintain stability of the state. The results rely on basic probability arguments together with spectral properties of random graphs.

    A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae)

    Full text link

    Edge-maximal graphs on surfaces

    No full text
    We prove that for every surface Σ of Euler genus g, every edgemaximal embedding of a graph in Σ is at most O(g) edges short of a triangulation of Σ. This provides the first answer to an open problem of Kainen (1974)

    Hamilton cycles, minimum degree, and bipartite holes

    No full text
    We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large “bipartite hole” (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chvátal and Erdős. In detail, an inline image-bipartite-hole in a graph G consists of two disjoint sets of vertices S and T with inline image and inline image such that there are no edges between S and T; and inline image is the maximum integer r such that G contains an inline image-bipartite-hole for every pair of nonnegative integers s and t with inline image. Our central theorem is that a graph G with at least three vertices is Hamiltonian if its minimum degree is at least inline image. From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of k edge-disjoint Hamilton cycles. We see that for dense random graphs inline image, the probability of failing to contain many edge-disjoint Hamilton cycles is inline image. Finally, we discuss the complexity of calculating and approximating inline image

    Edge-maximal graphs on surfaces

    No full text
    We prove that for every surface Σ of Euler genus g, every edgemaximal embedding of a graph in Σ is at most O(g) edges short of a triangulation of Σ. This provides the first answer to an open problem of Kainen (1974)
    corecore