233 research outputs found

    Identification of single-site gold catalysis in acetylene hydrochlorination

    Get PDF
    There remains considerable debate over the active form of gold under operating conditions of a recently validated gold catalyst for acetylene hydrochlorination. We have performed an in situ x-ray absorption fine structure study of gold/carbon (Au/C) catalysts under acetylene hydrochlorination reaction conditions and show that highly active catalysts comprise single-site cationic Au entities whose activity correlates with the ratio of Au(I):Au(III) present. We demonstrate that these Au/C catalysts are supported analogs of single-site homogeneous Au catalysts and propose a mechanism, supported by computational modeling, based on a redox couple of Au(I)-Au(III) species

    Predicting disease progression and poor outcomes in patients with moderately active rheumatoid arthritis: a systematic review

    Get PDF
    Objectives: Access to biologic DMARDs for RA is often restricted to those with severe disease. This systematic review aimed to identify prognostic factors in patients with moderate disease activity who may be at risk of disease progression and poor clinical outcomes. Methods: MEDLINE, Embase and Cochrane databases were searched (final search 22 September 2017), and data from patients with moderate disease [28-joint DAS (DAS28) >3.2–≤5.1] were included. Studies were evaluated according to the measure(s) of progression/poor outcome used: radiographic, disease activity or other indicators. Results: The searches identified 274 publications, of which 30 were selected for data extraction. Fourteen studies were prioritized, because they specifically analysed patients with moderate RA. Nine studies reported radiographic progression outcomes for 3241 patients, three studies reported disease activity progression for 1516 patients, and two studies reported other relevant outcomes for 2094 patients. Prognostic factors with consistent evidence for progression/poor outcome prediction were as follows: DAS28 ≥ 4.2, the presence of anti-CCP antibodies, and power Doppler ultrasound score ≥1. Some predictors were specific to either disease activity or radiographic progression. Conclusion: Several criteria used in standard clinical practice were identified that have the potential to inform the selection of patients with moderate RA who are at greater risk of a poor outcome. A combination of two or more of these factors might enhance their predictive potential. Further work is required to derive clinical decision rules incorporating these factors

    Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2

    Get PDF
    The oxidation of methane, the main component of natural gas, to selectively form oxygenated chemical feedstocks using molecular oxygen has been a long-standing grand challenge in catalysis. Here, using gold nanoparticles supported on the zeolite ZSM-5, we introduce a method to oxidize methane to methanol and acetic acid in water at temperatures between 120 and 240 °C using molecular oxygen in the absence of any added coreductant. Electron microscopy reveals that the catalyst does not contain gold atoms or clusters, but rather gold nanoparticles are the active component, while a mechanism involving surface adsorbed species is proposed in which methanol and acetic acid are formed via parallel pathways. [Figure not available: see fulltext.]

    Hepatitis C virus infection among transmission-prone medical personnel

    Get PDF
    Hepatitis C virus (HCV)-infected physicians have been reported to infect some of their patients during exposure-prone procedures (EPPs). There is no European consensus on the policy for the prevention of this transmission. To help define an appropriate preventive policy, we determined the prevalence of HCV infection among EPP-performing medical personnel in the Academic Medical Center in Amsterdam, the Netherlands. The prevalence of HCV infection was studied among 729 EPP-performing health care workers. Serum samples, stored after post-hepatitis B virus (HBV) vaccination testing in the years 2000–2009, were tested for HCV antibodies. Repeat reactive samples were confirmed by immunoblot assay and the detection of HCV RNA. The average age of the 729 health care workers was 39 years (range 18–66), suggesting a considerable cumulative occupational exposure to the blood. Nevertheless, only one of the 729 workers (0.14%; 95% confidence interval [CI]: <0.01% to 0.85%) was tested and confirmed to be positive for anti-HCV and positive for HCV RNA, which is comparable to the prevalence of HCV among Amsterdam citizens. Against this background, for the protection of personnel and patients, careful follow-up after needlestick injuries may be sufficient. If a zero-risk approach is desirable and costs are less relevant, the recurrent screening of EPP-performing personnel for HCV is superior to the follow-up of reported occupational exposures

    Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles

    Get PDF
    Disproportionation of benzyl alcohol has been identified as the source of toluene formation in the solvent free oxidation of benzyl alcohol using supported gold palladium catalysts. There is a slight increase in the disproportionation reaction, and hence the toluene selectivity, when this reaction is performed in a continuous mode using a micro-packed bed reactor when compared to the same reaction performed in a conventional glass stirred batch reactor. Oxidation and disproportionation reactions respond slightly differently to the changes in reaction parameters, like oxygen concentration and pressure, when a micro packed bed reactor was used instead of a conventional glass stirred reactor. When MgO supported gold–palladium catalysts were used for this reaction, the toluene selectivity reduced substantially at the cost of conversion

    Structural diversity in binary nanoparticle superlattices

    Full text link
    Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures - that is, 'bottom up' assembly - is a theme that runs through chemistry, biology and material science. Bacteria(1), macromolecules(2) and nanoparticles(3) can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL)(3-7) can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation(3,8,9), and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres(10,11). Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62551/1/nature04414.pd

    Electrostatic-Assembly-Driven Formation of Supramolecular Rhombus Microparticles and Their Application for Fluorescent Nucleic Acid Detection

    Get PDF
    In this paper, we report on the large-scale formation of supramolecular rhombus microparticles (SRMs) driven by electrostatic assembly, carried out by direct mixing of an aqueous HAuCl4 solution and an ethanol solution of 4,4′-bipyridine at room temperature. We further demonstrate their use as an effective fluorescent sensing platform for nucleic acid detection with a high selectivity down to single-base mismatch. The general concept used in this approach is based on adsorption of the fluorescently labeled single-stranded DNA (ssDNA) probe by SRM, which is accompanied by substantial fluorescence quenching. In the following assay, specific hybridization with its target to form double-stranded DNA (dsDNA) results in desorption of ssDNA from SRM surface and subsequent fluorescence recovery

    Crystal Growth of Thiol-Stabilized Gold Nanoparticles by Heat-Induced Coalescence

    Get PDF
    A monolayer of dodecanethiol-stabilized gold nanoparticles changed into two-dimensional and three-dimensional self-organized structures by annealing at 323 K. Subsequent crystal growth of gold nanoparticles occurred. Thiol molecules, although chemisorbed, form relatively unstable bonds with the gold surface; a few thiols desorbed from the surface and oxidized to disulfides at 323 K, because the interaction energy between thiol macromolecules is larger than that between a thiol and a nanoparticle. The gold nanoparticles approached each other and grew into large single or twinned crystals because of the van der Waals attraction and the heat generated by the exothermic formation of disulfides
    corecore