500 research outputs found

    Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration.

    Get PDF
    A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis.This work was supported by the National Institutes of Health (R37AI054503, LR, R01NS082567, CBM, 5F30HL110455, RB, 1DP2-OD008614, DMT), the Wellcome Trust (LR), the National Institute of Health Research Cambridge Biomedical Research Centre (LR), the Health Research Board of Ireland (HRA_POR/2013/387, MO’S and CSA/2012/16, JK), and The Royal City of Dublin Hospital Trust (Grant 146, JK).This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.cell.2016.02.034

    Quantitative analysis of optical coherence tomography for neovascular age-related macular degeneration using deep learning

    Get PDF
    PURPOSE: To apply a deep learning algorithm for automated, objective, and comprehensive quantification of optical coherence tomography (OCT) scans to a large real-world dataset of eyes with neovascular age-related macular degeneration (AMD), and make the raw segmentation output data openly available for further research. DESIGN: Retrospective analysis of OCT images from the Moorfields Eye Hospital AMD Database. PARTICIPANTS: 2473 first-treated eyes and another 493 second-treated eyes that commenced therapy for neovascular AMD between June 2012 and June 2017. METHODS: A deep learning algorithm was used to segment all baseline OCT scans. Volumes were calculated for segmented features such as neurosensory retina (NSR), drusen, intraretinal fluid (IRF), subretinal fluid (SRF), subretinal hyperreflective material (SHRM), retinal pigment epithelium (RPE), hyperreflective foci (HRF), fibrovascular pigment epithelium detachment (fvPED), and serous PED (sPED). Analyses included comparisons between first and second eyes, by visual acuity (VA) and by race/ethnicity, and correlations between volumes. MAIN OUTCOME MEASURES: Volumes of segmented features (mm3), central subfield thickness (CST) (μm). RESULTS: In first-treated eyes, the majority had both IRF and SRF (54.7%). First-treated eyes had greater volumes for all segmented tissues, with the exception of drusen, which was greater in second-treated eyes. In first-treated eyes, older age was associated with lower volumes for RPE, SRF, NSR and sPED; in second-treated eyes, older age was associated with lower volumes of NSR, RPE, sPED, fvPED and SRF. Eyes from black individuals had higher SRF, RPE and serous PED volumes, compared with other ethnic groups. Greater volumes of the vast majority of features were associated with worse VA. CONCLUSION: We report the results of large scale automated quantification of a novel range of baseline features in neovascular AMD. Major differences between first and second-treated eyes, with increasing age, and between ethnicities are highlighted. In the coming years, enhanced, automated OCT segmentation may assist personalization of real-world care, and the detection of novel structure-function correlations. These data will be made publicly available for replication and future investigation by the AMD research community

    Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.

    Get PDF
    IMPORTANCE: Quantitative volumetric measures of retinal disease in optical coherence tomography (OCT) scans are infeasible to perform owing to the time required for manual grading. Expert-level deep learning systems for automatic OCT segmentation have recently been developed. However, the potential clinical applicability of these systems is largely unknown. OBJECTIVE: To evaluate a deep learning model for whole-volume segmentation of 4 clinically important pathological features and assess clinical applicability. DESIGN, SETTING, AND PARTICIPANTS: This diagnostic study used OCT data from 173 patients with a total of 15 558 B-scans, treated at Moorfields Eye Hospital. The data set included 2 common OCT devices and 2 macular conditions: wet age-related macular degeneration (107 scans) and diabetic macular edema (66 scans), covering the full range of severity, and from 3 points during treatment. Two expert graders performed pixel-level segmentations of intraretinal fluid, subretinal fluid, subretinal hyperreflective material, and pigment epithelial detachment, including all B-scans in each OCT volume, taking as long as 50 hours per scan. Quantitative evaluation of whole-volume model segmentations was performed. Qualitative evaluation of clinical applicability by 3 retinal experts was also conducted. Data were collected from June 1, 2012, to January 31, 2017, for set 1 and from January 1 to December 31, 2017, for set 2; graded between November 2018 and January 2020; and analyzed from February 2020 to November 2020. MAIN OUTCOMES AND MEASURES: Rating and stack ranking for clinical applicability by retinal specialists, model-grader agreement for voxelwise segmentations, and total volume evaluated using Dice similarity coefficients, Bland-Altman plots, and intraclass correlation coefficients. RESULTS: Among the 173 patients included in the analysis (92 [53%] women), qualitative assessment found that automated whole-volume segmentation ranked better than or comparable to at least 1 expert grader in 127 scans (73%; 95% CI, 66%-79%). A neutral or positive rating was given to 135 model segmentations (78%; 95% CI, 71%-84%) and 309 expert gradings (2 per scan) (89%; 95% CI, 86%-92%). The model was rated neutrally or positively in 86% to 92% of diabetic macular edema scans and 53% to 87% of age-related macular degeneration scans. Intraclass correlations ranged from 0.33 (95% CI, 0.08-0.96) to 0.96 (95% CI, 0.90-0.99). Dice similarity coefficients ranged from 0.43 (95% CI, 0.29-0.66) to 0.78 (95% CI, 0.57-0.85). CONCLUSIONS AND RELEVANCE: This deep learning-based segmentation tool provided clinically useful measures of retinal disease that would otherwise be infeasible to obtain. Qualitative evaluation was additionally important to reveal clinical applicability for both care management and research

    Patients' knowledge and perception on optic neuritis management before and after an information session

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients' understanding of their condition affect the choice of treatment. The aim of this study is to evaluate patients' understanding and treatment preferences before and after an information session on the treatment of acute optic neuritis.</p> <p>Methods</p> <p>Participants were asked to complete a questionnaire consisting of 14 questions before and after an information session presented by a neuro-ophthalmologist. The information session highlighted the treatment options and the treatment effects based on the Optic Neuritis Treatment Trial in plain patient language. The information session stressed the finding that high dose intravenous steroid therapy accelerated visual recovery but does not change final vision and that treatment with oral prednisone alone resulted in a higher incidence of recurrent optic neuritis.</p> <p>Results</p> <p>Before the information session, 23 (85%) participants knew that there was treatment available for ON and this increased to 27 (100%) after the information session. There were no significantly change in patients knowledge of symptoms of ON and purpose of treatment before and after the information session. Before the information session, 4 (14%) respondents reported they would like to be treated by oral steroid alone in the event of an optic neuritis and 5 (19%) did not respond. After the education session, only 1 patient (4%) indicated they would undergo treatment with oral steroid alone but 25 (92%) indicated they would undergo treatment with intravenous steroid treatment, alone or in combination with oral treatment. Results indicated that there were significant differences in the numbers of participants selecting that they would undergo treatment with a steroid injection (n = 22, p = 0.016).</p> <p>Conclusions</p> <p>In this study, patients have shown good understanding of the symptoms and signs of optic neuritis. The finding that significant increases in the likelihood of patients engaging in best practice can be achieved with an information session is very important. This suggests that patient knowledge of available treatments and outcomes can play an important role in implementing and adopting guideline recommendations.</p

    The non-pathogenic mycobacteria M. smegmatis and M. fortuitum induce rapid host cell apoptosis via a caspase-3 and TNF dependent pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV pandemic raised the potential for facultative-pathogenic mycobacterial species like, <it>Mycobacterium kansasii</it>, to cause disseminating disease in humans with immune deficiencies. In contrast, non-pathogenic mycobacterial species, like <it>M. smegmatis</it>, are not known to cause disseminating disease even in immunocompromised individuals. We hypothesized that this difference in phenotype could be explained by the strong induction of an innate immune response by the non-pathogenic mycobacterial species.</p> <p>Results</p> <p>A comparison of two rapid-growing, non-pathogenic species (<it>M. smegmatis </it>and <it>M. fortuitum</it>) with two facultative-pathogenic species (<it>M. kansasii </it>and <it>M. bovis </it>BCG) demonstrated that only the non-pathogenic bacteria induced strong apoptosis in human THP-1 cells and murine bone marrow-derived macrophages (BMDM) and dendritic cells (BMDD). The phospho-<it>myo</it>-inositol modification of lipoarabinomannan (PI-LAM) isolated from non-pathogenic species may be one of the cell wall components responsible for the pro-inflammatory activity of the whole bacteria. Indeed, PI-LAM induces high levels of apoptosis and IL-12 expression compared to the mannosyl modification of LAM isolated from facultative-pathogenic mycobacteria. The apoptosis induced by non-pathogenic <it>M. smegmatis </it>was dependent upon caspase-3 activation and TNF secretion. Consistently, BALB/c BMDM responded by secreting large amounts of TNF upon infection with non-pathogenic but not facultative-pathogenic mycobacteria. Interestingly, C57Bl/6 BMDM do not undergo apoptosis upon infection with non-pathogenic mycobacteria despite the fact that they still induce an increase in TNF secretion. This suggests that the host cell signaling pathways are different between these two mouse genotypes and that TNF is necessary but not sufficient to induce host cell apoptosis.</p> <p>Conclusion</p> <p>These results demonstrate a much stronger induction of the innate immune response by non-pathogenic versus facultative-pathogenic mycobacteria as measured by host cell apoptosis, IL-12 and TNF cytokine induction. These observations lend support to the hypothesis that the strong induction of the innate immune response is a major reason for the lack of pathogenicity in fast-growing mycobacteria.</p

    MPI-PHYLIP: Parallelizing Computationally Intensive Phylogenetic Analysis Routines for the Analysis of Large Protein Families

    Get PDF
    Background: Phylogenetic study of protein sequences provides unique and valuable insights into the molecular and genetic basis of important medical and epidemiological problems as well as insights about the origins and development of physiological features in present day organisms. Consensus phylogenies based on the bootstrap and other resampling methods play a crucial part in analyzing the robustness of the trees produced for these analyses. Methodology: Our focus was to increase the number of bootstrap replications that can be performed on large protein datasets using the maximum parsimony, distance matrix, and maximum likelihood methods. We have modified the PHYLIP package using MPI to enable large-scale phylogenetic study of protein sequences, using a statistically robust number of bootstrapped datasets, to be performed in a moderate amount of time. This paper discusses the methodology used to parallelize the PHYLIP programs and reports the performance of the parallel PHYLIP programs that are relevant to the study of protein evolution on several protein datasets. Conclusions: Calculations that currently take a few days on a state of the art desktop workstation are reduced to calculations that can be performed over lunchtime on a modern parallel computer. Of the three protein methods tested, the maximum likelihood method scales the best, followed by the distance method, and then the maximum parsimony method. However, the maximum likelihood method requires significant memory resources, which limits its application to mor

    Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES) in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC.</p> <p>Methods</p> <p>We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression.</p> <p>Results</p> <p>There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS) patients (p = 0.007, 0.01, and 0.002, respectively). There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and <0.001, respectively) as well as stromal CXCR3 density (p = 0.003). There was a positive correlation between macrophage density and CXCR3 expression (r<sub>s </sub>= 0.520, p = 0.02) and between mast cell density and CXCR3 expression (r<sub>s </sub>= 0.499, p = 0.03) in the tumour islets.</p> <p>Conclusion</p> <p>Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets.</p

    Human Macrophages Infected with a High Burden of ESAT-6-Expressing M. tuberculosis Undergo Caspase-1- and Cathepsin B-Independent Necrosis

    Get PDF
    Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process
    corecore