227 research outputs found

    Surfactant protein-D and pulmonary host defense

    Get PDF
    Surfactant protein-D (SP-D) participates in the innate response to inhaled microorganisms and organic antigens, and contributes to immune and inflammatory regulation within the lung. SP-D is synthesized and secreted by alveolar and bronchiolar epithelial cells, but is also expressed by epithelial cells lining various exocrine ducts and the mucosa of the gastrointestinal and genitourinary tracts. SP-D, a collagenous calcium-dependent lectin (or collectin), binds to surface glycoconjugates expressed by a wide variety of microorganisms, and to oligosaccharides associated with the surface of various complex organic antigens. SP-D also specifically interacts with glycoconjugates and other molecules expressed on the surface of macrophages, neutrophils, and lymphocytes. In addition, SP-D binds to specific surfactant-associated lipids and can influence the organization of lipid mixtures containing phosphatidylinositol in vitro. Consistent with these diverse in vitro activities is the observation that SP-D-deficient transgenic mice show abnormal accumulations of surfactant lipids, and respond abnormally to challenge with respiratory viruses and bacterial lipopolysaccharides. The phenotype of macrophages isolated from the lungs of SP-D-deficient mice is altered, and there is circumstantial evidence that abnormal oxidant metabolism and/or increased metalloproteinase expression contributes to the development of emphysema. The expression of SP-D is increased in response to many forms of lung injury, and deficient accumulation of appropriately oligomerized SP-D might contribute to the pathogenesis of a variety of human lung diseases

    In vivo clearance of surfactant lipids during acute pulmonary inflammation.

    Get PDF
    BACKGROUND: A decrease in pulmonary surfactant has been suggested to contribute to the lung dysfunction associated with pulmonary inflammation. A number of studies have implicated surfactant clearance as a possible mechanism for altered pool sizes. The objective of the current study was to specifically investigate the mechanisms of surfactant clearance in a rodent model of acute pulmonary inflammation. METHODS: Inflammation was induced by intrapulmonary instillation of lipopolysaccharide (LPS: 100 μg/kg). Lipid clearance was assessed at 18 and 72 hours post-LPS instillation by intratracheal administration of radiolabel surfactant-like liposomes 2 hours prior to isolation and analysis of inflammatory cells and type II cells. RESULTS: At both 18 and 72 hours after LPS instillation there was significantly less radioactivity recovered in the lavage fluid compared to respective control groups (p < 0.05). At both time points, the number of cells recovered by lavage and their associated radioactivity was greater compared to control groups (p < 0.01). There was no difference in recovery of radioactivity by isolated type II cells or other cells obtained from enzymatic digestion of lung tissue. CONCLUSION: These results show that increased clearance of surfactant lipids in our model of acute pulmonary inflammation is primarily due to the inflammatory cells recruited to the airspace and not increased uptake by alveolar type II cells

    Susceptibility to ozone-induced airway inflammation is associated with decreased levels of surfactant protein D

    Get PDF
    BACKGROUND: Ozone (O(3)), a common air pollutant, induces exacerbation of asthma and chronic obstructive pulmonary disease. Pulmonary surfactant protein (SP)-D modulates immune and inflammatory responses in the lung. We have shown previously that SP-D plays a protective role in a mouse model of allergic airway inflammation. Here we studied the role and regulation of SP-D in O(3)-induced inflammatory changes in the lung. METHODS: To evaluate the effects of O(3 )exposure in mouse strains with genetically different expression levels of SP-D we exposed Balb/c, C57BL/6 and SP-D knockout mice to O(3 )or air. BAL cellular and cytokine content and SP-D levels were evaluated and compared between the different strains. The kinetics of SP-D production and inflammatory parameters were studied at 0, 2, 6, 12, 24, 48, and 72 hrs after O(3 )exposure. The effect of IL-6, an O(3)-inducible cytokine, on the expression of SP-D was investigated in vitro using a primary alveolar type II cell culture. RESULTS: Ozone-exposed Balb/c mice demonstrated significantly enhanced acute inflammatory changes including recruitment of inflammatory cells and release of KC and IL-12p70 when compared with age- and sex-matched C57BL/6 mice. On the other hand, C57BL/6 mice had significantly higher levels of SP-D and released more IL-10 and IL-6. Increase in SP-D production coincided with the resolution of inflammatory changes. Mice deficient in SP-D had significantly higher numbers of inflammatory cells when compared to controls supporting the notion that SP-D has an anti-inflammatory function in our model of O(3 )exposure. IL-6, which was highly up-regulated in O(3 )exposed mice, was capable of inducing the expression of SP-D in vitro in a dose dependent manner. CONCLUSION: Our data suggest that IL-6 contributes to the up-regulation of SP-D after acute O(3 )exposure and elevation of SP-D in the lung is associated with the resolution of inflammation. Absence or low levels of SP-D predispose to enhanced inflammatory changes following acute oxidative stress

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    Attenuated allergic airway hyperresponsiveness in C57BL/6 mice is associated with enhanced surfactant protein (SP)-D production following allergic sensitization

    Get PDF
    BACKGROUND: C57BL/6 mice have attenuated allergic airway hyperresponsiveness (AHR) when compared with Balb/c mice but the underlying mechanisms remain unclear. SP-D, an innate immune molecule with potent immunosuppressive activities may have an important modulatory role in the allergic airway response and the consequent physiological changes. We hypothesized that an elevated SP-D production is associated with the impaired ability of C57BL/6 mice to develop allergic AHR. METHODS: SP-D mRNA and protein expression was investigated during development of allergic airway changes in a model of Aspergillus fumigatus (Af)-induced allergic inflammation. To study whether strain dependency of allergic AHR is associated with different levels of SP-D in the lung, Balb/c and C57BL/6 mice were compared. RESULTS: Sensitization and exposure to Af induced significant airway inflammation in both mouse strains in comparison with naïve controls. AHR to acetylcholine however was significantly attenuated in C57BL/6 mice in spite of increased eosinophilia and serum IgE when compared with Balb/c mice (p < 0.05). Af challenge of sensitized C57BL/6 mice induced a markedly increased SP-D protein expression in the SA surfactant fraction (1,894 ± 170% of naïve controls) that was 1.5 fold greater than the increase in Balb/c mice (1,234 ± 121% p < 0.01). These changes were selective since levels of the hydrophobic SP-B and SP-C and the hydrophilic SP-A were significantly decreased following sensitization and challenge with Af in both strains. Further, sensitized and exposed C57BL/6 mice had significantly lower IL-4 and IL-5 in the BAL fluid than that of Balb/c mice (p < 0.05). CONCLUSIONS: These results suggest that enhanced SP-D production in the lung of C57BL/6 mice may contribute to an attenuated AHR in response to allergic airway sensitization. SP-D may act by inhibiting synthesis of Th2 cytokines

    A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1.

    Get PDF
    Genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of childhood acute lymphoblastic leukemia (ALL). To identify new susceptibility loci for the largest subtype of ALL, B-cell precursor ALL (BCP-ALL), we conducted a meta-analysis of two GWASs with imputation using 1000 Genomes and UK10K Project data as reference (totaling 1658 cases and 7224 controls). After genotyping an additional 2525 cases and 3575 controls, we identify new susceptibility loci for BCP-ALL mapping to 10q26.13 (rs35837782, LHPP, P=1.38 × 10(-11)) and 12q23.1 (rs4762284, ELK3, P=8.41 × 10(-9)). We also provide confirmatory evidence for the existence of independent risk loci at 9p21.3, but show that the association marked by rs77728904 can be accounted for by linkage disequilibrium with the rare high-impact CDKN2A p.Ala148Thr variant rs3731249. Our data provide further insights into genetic susceptibility to ALL and its biology

    Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau

    Get PDF
    Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and ß-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Aß load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD

    Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta

    Get PDF
    Amyloid precursor protein (APP) and its extracellular domain, soluble APP alpha (sAPPα) play important physiological and neuroprotective roles. However, rare forms of familial Alzheimer’s disease are associated with mutations in APP that increase toxic amyloidogenic cleavage of APP and produce amyloid beta (Aβ) at the expense of sAPPα and other non-amyloidogenic fragments. Although mitochondrial dysfunction has become an established hallmark of neurotoxicity, the link between Aβ and mitochondrial function is unclear. In this study we investigated the effects of increased levels of neuronal APP or Aβ on mitochondrial metabolism and gene expression, in human SH-SY5Y neuroblastoma cells. Increased non-amyloidogenic processing of APP, but not Aβ, profoundly decreased respiration and enhanced glycolysis, while mitochondrial DNA (mtDNA) transcripts were decreased, without detrimental effects to cell growth. These effects cannot be ascribed to Aβ toxicity, since higher levels of endogenous Aβ in our models do not cause oxidative phosphorylation (OXPHOS) perturbations. Similarly, chemical inhibition of β-secretase decreased mitochondrial respiration, suggesting that non-amyloidogenic processing of APP may be responsible for mitochondrial changes. Our results have two important implications, the need for caution in the interpretation of mitochondrial perturbations in models where APP is overexpressed, and a potential role of sAPPα or other non-amyloid APP fragments as acute modulators of mitochondrial metabolism

    Perspectives on supporting fathers affected by postnatal depression and a history of violence

    Get PDF
    Intimate partner violence in the perinatal period is a significant problem that remains underscreened, underdiagnosed and undertreated. The establishment of evidence-based guidelines to enable health visitors to identify couples experiencing violence and offer appropriate support has been hampered by the complex interplay between maternal and paternal mental health problems and violence. This study explored the experiences of UK fathers who voluntarily engaged with services designed to eliminate their ideation to violence. The findings indicate that the tendency to violence is increased by stresses associated with the transition to parenthood. Men felt pressured by concerns for their partner's mental health, changes in the relationship, sleep disturbances and the burden of infant care they assumed when the mother was unable to cope. Health visitors are ideally placed to assess for factors linked to the emergence of violence and put in place interventions to minimise occurrence
    corecore