5,947 research outputs found
The ground state of a spin-1/2 neutral particle with anomalous magnetic moment in a Aharonov-Casher configuration
We determine the (bound) ground state of a spin 1/2 chargless particle with
anomalous magnetic moment in certain Aharonov-Casher configurations. We recast
the description of the system in a supersymmetric form. Then the basic physical
requirements for unbroken supersymmetry are established. We comment on the
possibility of neutron trapping in these systems
Unbroken supersymmetry in the Aharonov-Casher effect
We consider the problem of the bound states of a spin 1/2 chargless particle
in a given Aharonov-Casher configuration. To this end we recast the description
of the system in a supersymmetric form. Then the basic physical requirements
for unbroken supersymmetry are established. We comment on the possibility of
neutron confinement in this system
Ultrasound in the diagnosis of calcium pyrophosphate dihydrate deposition disease. A systematic literature review and a meta-analysis
..
Inuloxin E, a New Seco-Eudesmanolide Isolated from Dittrichia viscosa, Stimulating Orobanche cumana Seed Germination
A new sesquiterpenoid belonging to the subgroup seco-eudesmanolides and named inuloxin E was isolated from Dittrichia viscosa, together with the already known sesquiterpenoids inuloxins A–D and -costic acid. Inuloxin E was characterized by spectroscopic data (essentially NMR and ESIMS) as 3-methylene-6-(1-methyl-4-oxo-pentyl)-3a,4,7,7a-tetrahydro-3H-benzofuran-2-one. Its relative configuration was determined by comparison with the closely related inuloxin D and chemical
conversion of inuloxin E into inuloxin D and by the observed significant correlation in the NOESY spectrum. Both inuloxins D and E induced germination of the parasitic weed Orobanche cumana, but were inactive on the seeds of Orobanche minor and Phelipanche ramosa. The germination activity of some hemisynthetic esters of inuloxin D was also investigated
Neutron Acceleration in Uniform Electromagnetic Fields
The question as to whether neutron acceleration can occur in uniform
electromagnetic fields is examined. Although such an effect has been predicted
using the canonical equations of motion some doubt has been raised recently as
to whether it is in principle observable for a spin 1/2 particle. To resolve
this issue a gedanken experiment is proposed and analyzed using a wave packet
construction for the neutron beam. By allowing arbitrary orientation for the
neutron spin as well as for the electric and magnetic fields a non vanishing
acceleration of the center of the neutron wave packet is found which confirms
the predictions of the canonical formalism.Comment: 11 page
The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer
Ultraconserved regions (UCRs) represent a relatively new class of non-coding genomic sequences highly conserved between human, rat and mouse genomes. These regions can reside within exons of protein-coding genes, despite the vast majority of them localizes within introns or intergenic regions. Several studies have undoubtedly demonstrated that most of these regions are actively transcribed in normal cells/tissues, where they contribute to regulate many cellular processes. Interestingly, these non-coding RNAs exhibit aberrant expression levels in human cancer cells and their expression profiles have been used as prognostic factors in human malignancies, as well as to unambiguously distinguish among distinct cancer types. In this review, we first describe their identification, then we provide some updated information about their genomic localization and classification. More importantly, we discuss about the available literature describing an overview of the mechanisms through which some transcribed UCRs (T-UCR) contribute to cancer progression or to the metastatic spread. To date, the interplay between T-UCRs and microRNAs is the most convincing evidence linking T-UCRs and tumorigenesis. The limitations of these studies and the future challenges to be addressed in order to understand the biological role of T-UCRs are also discussed herein. We envision that future efforts are needed to convincingly include this class of ncRNAs in the growing area of cancer therapeutics
Laboratory evaluation of natural and synthetic aromatic compounds as potential attractants for male mediterranean fruit fly, ceratitis capitata
Ceratitis capitata, the Mediterranean fruit fly, is one of the most serious agricultural pests worldwide responsible for significant reduction in fruit and vegetable yields. Eradication is expensive and often not feasible. Current control methods include the application of conventional insecticides, leading to pesticide resistance and unwanted environmental effects. The aim of this study was to identify potential new attractants for incorporation into more environmentally sound management programs for C. capitata. In initial binary choice bioassays against control, a series of naturally occurring plant and fungal aromatic compounds and their related analogs were screened, identifying phenyllactic acid (7), estragole (24), o-eugenol (21), and 2-allylphenol (23) as promising attractants for male C. capitata. Subsequent binary choice tests evaluated five semisynthetic derivatives prepared from 2-allylphenol, but none of these were as attractive as 2-allylphenol. In binary choice bioassays with the four most attractive compounds, males were more attracted to o-eugenol (21) than to estragole (24), 2-allylphenol (23), or phenyllactic acid (7). In addition, electroantennography (EAG) was used to quantify antennal olfactory responses to the individual compounds (1–29), and the strongest EAG responses were elicited by 1-allyl-4-(trifluoromethyl)benzene (11), estragole (24), 4-allyltoluene (14), trans-anethole (9), o-eugenol (21), and 2-allylphenol (23). The compounds evaluated in the current investigation provide insight into chemical structure–function relationships and help direct future efforts in the development of improved attractants for the detection and control of invasive C. capitata
A Fast Digital Integrator for Magnetic Field Measurements at CERN
A self-calibrating digital instrument for flux measurements on magnets for accelerators used in basic research on subnuclear particles is proposed. The instrument acquires voltage arising from rotating coils transducers with a theoretical resolution of 10 ppt and a maximum sampling frequency of 800 kS/s. Then, samples are integrated on-line and suitably processed in order to improve time resolution and flux accuracy. This allows the limits of state-of-the-art digital fluximeters, related mainly to newgeneration rotating coils, with trigger rate of 20 kHz and coils speed of 10 rps, to be overcome. The instrument has been prototyped at Magnetic Measurement and Testing (MTM) Group of European Laboratory for Nuclear Research (CERN), under a framework of cooperation with the University of Sannio. Details on hardware and firmware conception, as well as on experimental results of the instrument principle validation, and of the preliminary metrological characterization of the prototype, are provided
Topological phase due to electric dipole moment and magnetic monopole interaction
We show that there is an anologous Aharonov-Casher effect on a neutral
particle with electric dipole moment interacting with a magnetic filed produced
by magnetic monopoles.Comment: 8 page
- …
