59 research outputs found
Pilomatrix carcinoma of the lacrimal caruncle: a case report.
A 45-year-old man presented with a 3-month history of a mass located in the caruncle of his right eye. An incisional biopsy had been performed one month prior by another specialist, and the histopathology report showed basal cell carcinoma. The mass was completely excised with a 2 mm safety margin, and the large conjunctival defect was reconstructed with one sheet of amniotic membrane allograft. A histological diagnosis of pilomatrix carcinoma was established. To prevent recurrence after surgery, we added bevacizumab (25 mg/mL, 1.25 mg/mL per drop) eye drops four times per day for three months. At the one-year follow-up, the patient showed no evidence of local recurrence or distant metastasis after initial excision and remains under close follow-up. Pilomatrix carcinoma should be considered in the differential diagnosis of a caruncular mass
Uniform design for the optimization of Al2O3 nanofilms produced by electrophoretic deposition
Surface modification by means of nanostructures is of interest to enhance boiling heat transfer in various applications including the organic Rankine cycle (ORC). With the goal of obtaining rough and dense aluminum oxide (Al2O3) nanofilms, the optimal combination of process parameters for electrophoretic deposition (EPD) based on the uniform design (UD) method is explored in this paper. The detailed procedures for the EPD process and UD method are presented. Four main influencing conditions controlling the EPD process were identified as nanofluid concentration, deposition time, applied voltage and suspension pH. A series of tests were carried out based on the UD experimental design. A regression model and statistical analysis were applied to the results. Sensitivity analyses of the effect of the four main parameters on the roughness and deposited mass of Al2O3 films were also carried out. The results showed that Al2O3 nanofilms were deposited compactly and uniformly on the substrate. Within the range of the experiments, the preferred combination of process parameters was determined to be nanofluid concentration of 2 wt.%, deposition time of 15 min, applied voltage of 23 V and suspension pH of 3, yielding roughness and deposited mass of 520.9 nm and 161.6 × 10− 4 g/cm2, respectively. A verification experiment was carried out at these conditions and gave values of roughness and deposited mass within 8% error of the expected ones as determined from the UD approach. It is concluded that uniform design is useful for the optimization of electrophoretic deposition requiring only 7 tests compared to 49 using the orthogonal design method
Host Specialization and Dispersal in Avian Haemosporidians
In order to be able to understand the ecological and evolutionary processes involved in the emergence of infectious diseases, one needs to comprehend how parasites arrive at new geographical areas and how they manage to maintain viable populations and even expand their ranges. We discuss host specificity in avian haemosporidians and how encounter and compatibility filters affect the dispersal of avian haemosporidians, and how these filters affect avian haemosporidian assemblages at different spatial and evolutionary scales. There are at least three important barriers to the dispersal of avian haemosporidians: (i) geographic barriers, (ii) environmental barriers, and (iii) interspecies barriers. In this chapter, we discuss the factors involved in these barriers and their effects on the structure of avian haemosporidian assemblages. Host specificity plays an important role in parasite dispersal, and in the case of avian haemosporidians that are vector-borne parasites, it needs to be evaluated both at the vector and bird host levels. Understanding the effects of these factors on host–vector–parasite dynamics is important to unravel the dispersal and diversification mechanisms of avian haemosporidians. We end this chapter reviewing host specialization in avian haemosporidians of tropical regions, discussing the mechanisms involved in the dispersal and specialization of these parasites and point out important research gaps that need attention
The short-term effects of intravitreal aflibercept injections and dexamethasone implant on ocular hemodynamics in retinal vein occlusions
Emine Ciloglu,1 Ayse Yıldırım Celikdemir21Department of Ophthalmology, Adana City Training and Research Hospital, Adana, Turkey; 2Department of Radiology, Adana City Training and Research Hospital, Adana, TurkeyPurpose: To determine the early effects of intravitreal anti-VEGF and dexamethasone application on blood flow velocities in patients with retinal vein occlusions.Methods: The ophthalmic (OA) and the central retinal arteries (CRAs) of the affected and unaffected eyes of 21 patients with central retinal vein occlusion (CRVO), and 26 patients with branch retinal vein occlusion (BRVO) were investigated by Color Doppler imaging (CDI). Peak systolic volume (PSV), end diastolic volume (EDV), and average blood velocity (Vmean) of the CRA and OA were measured and resistive indexes (RI) were calculated at pre-injection and the 1st week and 1st month post-injection.Results: There was no statistically significant difference between the OA values for affected and unaffected eyes in the CRVO group before treatment. The CRA, EDV, and Vmean values were significantly lower in affected eyes. Blood flow velocities of both CRA and OA were not significantly different than in the fellow unaffected eyes in the BRVO group. The differences between PSV, EDV, and Vmean measurements of OA and CRA at different times pre- and post-injection in response to anti-VEGF and dexamethasone treatment in the CRVO group were significant; but there was no difference in RI value. OA blood flow velocity measurements were not statistically different post-injection in the BRVO group; however, the values of PSV and EDV of CRA decreased post-injection.Conclusion: Intravitreal anti-VEGF and dexamethasone implant may induce retinal arteriolar vasoconstriction in patients with retinal vein occlusion.Keywords: retinal vein occlusion, anti-VEGF, dexamethasone, ocular doppler ultrasonograph
Sutureless amniotic membrane transplantation following excision of ocular surface neoplasia
[No abstract available
Machine learning models for prediction of Escherichia coli O157:H7 growth in raw ground beef at different storage temperatures
Shiga toxin-producing Escherichia coli (STEC) can be life-threatening and lead to major outbreaks. The prevention of STEC-related infections can be provided by control measures at all stages of the food chain. The growth performance of E. coli O157:H7 at different temperatures in raw ground beef spiked with cocktail inoculum was investigated using machine learning (ML) models to address this problem. After spiking, ground beef samples were stored at 4, 10, 20, 30 and 37 °C. Repeated E. coli O157 enumeration was performed at 0–96 h with 21 times repeated counting. The obtained microbiological data were evaluated with ML methods (Artificial Neural Network (ANN), Random Forest (RF), Support Vector Regression (SVR), and Multiple Linear Regression (MLR)) and statistically compared for valid prediction. The coefficient of determination (R2) and mean squared error (MSE) are two essential criteria used to evaluate the model performance regarding the comparison between the observed value and the prediction made by the model. RF model showed superior performance with 0.98 R2 and 0.08 MSE values for predicting the growth performance of E. coli O157 at different temperatures. MLR model predictions were obtained further from the observed values with 0.66 R2 and 2.7 MSE values. Our results indicate that ML methods can predict of E. coli O157:H7 growth in ground beef at different temperatures to strengthen food safety professionals and legal authorities to assess contamination risks and determine legal limits and criteria proactively. © 202
Importance of Physical and Physiological Parameters in Simulated Particle Transport in the Alveolar Zone of the Human Lung
The trajectory and deposition efficiency of micron-sized (1–5 µm) particles, inhaled into the pulmonary system, are accurately determined with the aid of a newly developed model and modified simulation techniques. This alveolar model, which has a simple but physiologically appropriate geometry, and the utilized fluid structure interaction (FSI) methods permit the precise simulation of tissue wall deformation and particle fluid interactions. The relation between tissue movement and airflow in the alveolated duct is solved by a two-way fluid structure interaction simulation technique, using ANSYS Workbench (Release 16.0, ANSYS INC., Pittsburgh, PA, USA, 2015). The dynamic transport of particles and their deposition are investigated as a function of aerodynamic particle size, tissue visco-elasticity, tidal breathing period, gravity orientation and particle–fluid interactions. It is found that the fluid flows and streamlines differ between the present flexible model and rigid models, and the two-way coupling particle trajectories vary relative to one-way particle coupling. In addition, the results indicate that modelling the two-way coupling particle system is important because the two-way discrete phase method (DPM) approach despite its complexity provides more extensive particle interactions and is more reliable than transport results from the one-way DPM approach. The substantial difference between the results of the two approaches is likely due to particle–fluid interactions, which re-suspend the sediment particles in the airway stream and hence pass from the current generation
- …