41 research outputs found
The Calcineurin Antagonist, RCAN1-4 is Induced by Exhaustive Exercise in Rat Skeletal Muscle
International audienceThe aim of this work was to study the regulation of the calcineurin antagonist regulator of calcineurin 1 (RCAN1) in rat skeletal muscles after exhaustive physical exercise, which is a physiological modulator of oxidative stress. Three skeletal muscles, namely extensor digitorum longus (EDL), gastrocnemius, and soleus, were investigated. Exhaustive exercise increased RCAN1-4 protein levels in EDL and gastrocnemius, but not in soleus. Protein oxidation as an index of oxidative stress was increased in EDL and gastrocnemius, but remained unchanged in soleus. However, lipid peroxidation was increased in all three muscles. CuZnSOD and catalase protein levels were increased at 3 h postexercise in soleus, whereas they remained unchanged in EDL and gastrocnemius. Calcineurin enzymatic activity declined in EDL and gastrocnemius but not in soleus, and its protein expression was decreased in all three muscles. The level of PGC1-α protein remained unchanged, whereas the protein expression of the transcription factor NFATc4 was decreased in all three muscles. Adiponectin expression was increased in all three muscles. RCAN1-4 expression in EDL and gastrocnemius muscles was augmented by the oxidative stress generated from exhaustive exercise. We propose that increased RCAN1-4 expression and the signal transduction pathways it regulates represent important components of the physiological adaptation to exercise-induced oxidative stress
The Oxygen Paradox, the French Paradox, and age-related diseases
open46openDavies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, Henry J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A.Davies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, HENRY J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A
Mécanismes de la peroxydation lipidique et des anti-oxydations
Lipid peroxidation is a general phenomenon which takes place in foods as well as in cellular membranes and lipoproteins. It leads to oxidative dammages with consequences to food preservation and to the development of various diseases. The targets of lipid oxidation are the polyunsaturated fatty acids. Owing to the fact that oxygen can exist under 2 states, a ground state (3O2) and an excited state (1O2), lipid peroxidation can proceed by 2 different reactions. One which involves (3O2), is a free-radical chain reaction with 3 steps (initiation by free radicals, propagation and terminaison), the other which involves (1O2) is a fast reaction with direct addition of oxygen to the double bonds of fatty acids. Both reactions lead to the formation of hydroperoxides as primary products. Hydroperoxides decomposed rapidly to give many secondary products such as lipid free radicals which contribute to increase the oxidation of other molecules such as proteins, nucleic acids and other lipids. Ketones, alkanes (pentane, ethane) and aldehydes (MDA, 4HNE) are also formed by hydroperoxide decomposition. Aldehydes are reactive compounds which bind to the amino group of proteins, nucleic acids and lipids causing dammages to these molecules. The consequences for membranes are alterations of their functions which could lead to cell death. In food hydroperoxide decomposition give rise to qualitative alterations. Lipid peroxidation is a major problem for food industry as well as for human health since it is associated to many diseases. Antioxidants can prevent or delay lipid peroxidation by different mechanisms
Mécanismes de la peroxydation lipidique et des anti-oxydations
Lipid peroxidation is a general phenomenon which takes place in foods as well as in cellular membranes and lipoproteins. It leads to oxidative dammages with consequences to food preservation and to the development of various diseases. The targets of lipid oxidation are the polyunsaturated fatty acids. Owing to the fact that oxygen can exist under 2 states, a ground state (3O2) and an excited state (1O2), lipid peroxidation can proceed by 2 different reactions. One which involves (3O2), is a free-radical chain reaction with 3 steps (initiation by free radicals, propagation and terminaison), the other which involves (1O2) is a fast reaction with direct addition of oxygen to the double bonds of fatty acids. Both reactions lead to the formation of hydroperoxides as primary products. Hydroperoxides decomposed rapidly to give many secondary products such as lipid free radicals which contribute to increase the oxidation of other molecules such as proteins, nucleic acids and other lipids. Ketones, alkanes (pentane, ethane) and aldehydes (MDA, 4HNE) are also formed by hydroperoxide decomposition. Aldehydes are reactive compounds which bind to the amino group of proteins, nucleic acids and lipids causing dammages to these molecules. The consequences for membranes are alterations of their functions which could lead to cell death. In food hydroperoxide decomposition give rise to qualitative alterations. Lipid peroxidation is a major problem for food industry as well as for human health since it is associated to many diseases. Antioxidants can prevent or delay lipid peroxidation by different mechanisms
Modulation de la signalisation cellulaire par les composants naturels alimentaires : pertinence en pathologies humaines
International audienceno abstrac
Fumée de cigarette et athérosclérose (implication du stress oxydant)
RENNES1-BU Santé (352382103) / SudocSudocFranceF