34,574 research outputs found
Impact of edge-removal on the centrality betweenness of the best spreaders
The control of epidemic spreading is essential to avoid potential fatal
consequences and also, to lessen unforeseen socio-economic impact. The need for
effective control is exemplified during the severe acute respiratory syndrome
(SARS) in 2003, which has inflicted near to a thousand deaths as well as
bankruptcies of airlines and related businesses. In this article, we examine
the efficacy of control strategies on the propagation of infectious diseases
based on removing connections within real world airline network with the
associated economic and social costs taken into account through defining
appropriate quantitative measures. We uncover the surprising results that
removing less busy connections can be far more effective in hindering the
spread of the disease than removing the more popular connections. Since
disconnecting the less popular routes tend to incur less socio-economic cost,
our finding suggests the possibility of trading minimal reduction in
connectivity of an important hub with efficiencies in epidemic control. In
particular, we demonstrate the performance of various local epidemic control
strategies, and show how our approach can predict their cost effectiveness
through the spreading control characteristics.Comment: 11 pages, 4 figure
Vocal learning promotes patterned inhibitory connectivity.
Skill learning is instantiated by changes to functional connectivity within premotor circuits, but whether the specificity of learning depends on structured changes to inhibitory circuitry remains unclear. We used slice electrophysiology to measure connectivity changes associated with song learning in the avian analog of primary motor cortex (robust nucleus of the arcopallium, RA) in Bengalese Finches. Before song learning, fast-spiking interneurons (FSIs) densely innervated glutamatergic projection neurons (PNs) with apparently random connectivity. After learning, there was a profound reduction in the overall strength and number of inhibitory connections, but this was accompanied by a more than two-fold enrichment in reciprocal FSI-PN connections. Moreover, in singing birds, we found that pharmacological manipulations of RA's inhibitory circuitry drove large shifts in learned vocal features, such as pitch and amplitude, without grossly disrupting the song. Our results indicate that skill learning establishes nonrandom inhibitory connectivity, and implicates this patterning in encoding specific features of learned movements
Water Vapour Effects in Mass Measurement
Water vapour inside the mass comparator enclosure is a critical parameter. In
fact, fluctuations of this parameter during mass weighing can lead to errors in
the determination of an unknown mass. To control that, a proposal method is
given and tested. Preliminary results of our observation of water vapour
sorption and desorption processes from walls and mass standard are reported
Particle dispersion models and drag coefficients for particles in turbulent flows
Some of the concepts underlying particle dispersion due to turbulence are reviewed. The traditional approaches to particle dispersion in homogeneous, stationary turbulent fields are addressed, and recent work on particle dispersion in large scale turbulent structures is reviewed. The state of knowledge of particle drag coefficients in turbulent gas-particle flows is also reviewed
Discovering the Higgs Bosons of Minimal Supersymmetry with Muons and a Bottom Quark
We investigate the prospects for the discovery at the CERN Large Hadron
Collider of a neutral Higgs boson produced with one bottom quark followed by
Higgs decay into a muon pair. We work within the framework of the minimal
supersymmetric model. The dominant physics background from the production of , , j=g,u,d,s,c, and is calculated
with realistic acceptance cuts. Promising results are found for the CP-odd
pseudoscalar () and the heavier CP-even scalar () Higgs bosons with
masses up to 600 GeV. This discovery channel with one energetic bottom quark
greatly improves the discovery potential of the LHC beyond the inclusive
channel .Comment: Version to appear in Phys. Rev. Let
Adjacency labeling schemes and induced-universal graphs
We describe a way of assigning labels to the vertices of any undirected graph
on up to vertices, each composed of bits, such that given the
labels of two vertices, and no other information regarding the graph, it is
possible to decide whether or not the vertices are adjacent in the graph. This
is optimal, up to an additive constant, and constitutes the first improvement
in almost 50 years of an bound of Moon. As a consequence, we
obtain an induced-universal graph for -vertex graphs containing only
vertices, which is optimal up to a multiplicative constant,
solving an open problem of Vizing from 1968. We obtain similar tight results
for directed graphs, tournaments and bipartite graphs
Constraints on a new alternative model to dark energy
The recent type Ia supernova data suggest that the universe is accelerating
now and decelerated in recent past. This may provide the evidence that the
standard Friedmann equation needs to be modified. We analyze in detail a new
model in the context of modified Friedmann equation using the supernova data
published by the High- Supernova Search Team and the Supernova Cosmology
Project. The new model explains recent acceleration and past deceleration.
Furthermore, the new model also gives a decelerated universe in the future.Comment: 12 pages, 5 figures, use ws-ijmpd, minor changes made. In the new
version, a detailed derivation of the model is give
A Proposal to Detect Dark Matter Using Axionic Topological Antiferromagnets
Antiferromagnetically doped topological insulators (A-TI) are among the
candidates to host dynamical axion fields and axion-polaritons; weakly
interacting quasiparticles that are analogous to the dark axion, a long sought
after candidate dark matter particle. Here we demonstrate that using the axion
quasiparticle antiferromagnetic resonance in A-TI's in conjunction with
low-noise methods of detecting THz photons presents a viable route to detect
axion dark matter with mass 0.7 to 3.5 meV, a range currently inaccessible to
other dark matter detection experiments and proposals. The benefits of this
method at high frequency are the tunability of the resonance with applied
magnetic field, and the use of A-TI samples with volumes much larger than 1
mm.Comment: 6 pages, 4 figures. v2 accepted for publication in Physical Review
Letters. Many points clarified, some parameter estimates revise
- …