5,854 research outputs found
Structural Change in the U.S. Dairy Industry: Growth in Scale, Regional Shifts in Milk Production and Processing, and Internationalism
Structural changes in the U.S. dairy industry from the early 1980s to the late 1990s included familiar increases in concentration, industry adjustments to serve large supermarkets, the emergence of two national fluid milk firms (Suiza Foods and Dean Foods), and the emergence of two national dairy cooperatives (Dairy Farmers of America and Land O'Lakes, Inc.). Shifts in the location of milk production in the U.S. to the Western states have caused new dairy product manufacturing plants to locate in those states. This development promises to intensify battles over market share in the expanding U.S. cheese market between Western firms and Upper Midwestern firms. Foreign direct investment in the U.S. dairy industry--especially by European Union firms and a large Canadian firm--increased during the 1980s and 1990s. Facing challenges to expand dairy exports or shrink, the U.S. dairy industry probably will gravitate toward the latter unless government price support and trade policies change to increase price incentives for U.S. firms to export dairy products.
QCDSP: The first 64 nodes
We present a summary of the progress on QCDSP in the last year. QCDSP,
Quantum Chromodynamics on Digital Signal Processors, is an inexpensive computer
being built at Columbia that can achieve 0.8 teraflops for three million
dollars.Comment: 4 pages, 1 figur
Unexpected Spin-Off from Quantum Gravity
We propose a novel way of investigating the universal properties of spin
systems by coupling them to an ensemble of causal dynamically triangulated
lattices, instead of studying them on a fixed regular or random lattice.
Somewhat surprisingly, graph-counting methods to extract high- or
low-temperature series expansions can be adapted to this case. For the
two-dimensional Ising model, we present evidence that this ameliorates the
singularity structure of thermodynamic functions in the complex plane, and
improves the convergence of the power series.Comment: 10 pages, 4 figures; final, slightly amended version, to appear in
Physica
Supersymmetry, shape invariance and the Legendre equations
In three space dimensions, when a physical system possesses spherical
symmetry, the dynamical equations automatically lead to the Legendre and the
associated Legendre equations, with the respective orthogonal polynomials as
their standard solutions. This is a very general and important result and
appears in many problems in physics (for example, the multipole expansion etc).
We study these equations from an operator point of view, much like the harmonic
oscillator, and show that there is an underlying shape invariance symmetry in
these systems responsible for their solubility. We bring out various
interesting features resulting from this analysis from the shape invariance
point of view.Comment: 4 pages, 1 figure; to appear in PL
Localization and chiral symmetry in 2+1 flavor domain wall QCD
We present results for the dependence of the residual mass of domain wall
fermions (DWF) on the size of the fifth dimension and its relation to the
density and localization properties of low-lying eigenvectors of the
corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1
flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate
ensembles of configurations with a space-time volume and an
extent of 8 in the fifth dimension for the sea quarks. We demonstrate the
existence of a regime where the degree of locality, the size of chiral symmetry
breaking and the rate of topology change can be acceptable for inverse lattice
spacings GeV.Comment: 59 Pages, 23 figures, 1 MPG linke
The kaon semileptonic form factor in Nf=2+1 domain wall lattice QCD with physical light quark masses
We present the first calculation of the kaon semileptonic form factor with
sea and valence quark masses tuned to their physical values in the continuum
limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of
simulations at the phenomenologically convenient point of zero momentum
transfer in large physical volumes and for two different values of the lattice
spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the
first error is statistical and the second error systematic. This result can be
combined with experimental measurements of K->pi decays for a determination of
the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first
error is from experiment and the second error from the lattice computation.Comment: 21 pages, 7 figures, 6 table
Orbital quantization in the high magnetic field state of a charge-density-wave system
A superposition of the Pauli and orbital coupling of a high magnetic field to
charge carriers in a charge-density-wave (CDW) system is proposed to give rise
to transitions between subphases with quantized values of the CDW wavevector.
By contrast to the purely orbital field-induced density-wave effects which
require a strongly imperfect nesting of the Fermi surface, the new transitions
can occur even if the Fermi surface is well nested at zero field. We suggest
that such transitions are observed in the organic metal
-(BEDT-TTF)KHg(SCN) under a strongly tilted magnetic field.Comment: 14 pages including 4 figure
- …
