1,042 research outputs found

    Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities

    Get PDF
    Cratering experiments have been conducted with 0.5-mm diameter AISI 52100 steel spherical projectiles and 30-mm diameter, 15-mm long graphite targets. The latter were made of a commercial grade of polycrystalline and porous graphite named EDM3 whose behavior is known as macroscopically isotropic. A two-stage light-gas gun launched the steel projectiles at velocities between 1.1 and 4.5 km s 1. In most cases, post-mortem tomographies revealed that the projectile was trapped, fragmented or not, inside the target. It showed that the apparent crater size and depth increase with the impact velocity. This is also the case of the crater volume which appears to follow a power law significantly different from those constructed in previous works for similar impact conditions and materials. Meanwhile, the projectile depth of penetration starts to decrease at velocities beyond 2.2 km s 1. This is firstly because of its plastic deformation and then, beyond 3.2 km s 1, because of its fragmentation. In addition to these three regimes of penetration behavior already described by a few authors, we suggest a fourth regime in which the projectile melting plays a significant role at velocities above 4.1 km s 1. A discussion of these four regimes is provided and indicates that each phenomenon may account for the local evolution of the depth of penetration

    Dynamic cratering of graphite : experimental results and simulations

    Get PDF
    The cratering process in brittle materials under hypervelocity impact (HVI) is of major relevance for debris shielding in spacecraft or high-power laser applications. Amongst other materials, carbon is of particular interest since it is widely used as elementary component in composite materials. In this paper we study a porous polycrystalline graphite under HVI and laser impact, both leading to strong debris ejection and cratering. First, we report new experimental data for normal impacts at 4100 and 4200 m s-1 of a 500-μm-diameter steel sphere on a thick sample of graphite. In a second step, dynamic loadings have been performed with a high-power nanosecond laser facility. High-resolution X-ray tomographies and observations with a scanning electron microscope have been performed in order to visualize the crater shape and the subsurface cracks. These two post-mortem diagnostics also provide evidence that, in the case of HVI tests, the fragmented steel sphere was buried into the graphite target below the crater surface. The current study aims to propose an interpretation of the results, including projectile trapping. In spite of their efficiency to capture overall trends in crater size and shape, semi-empirical scaling laws do not usually predict these phenomena. Hence, to offer better insight into the processes leading to this observation, the need for a computational damage model is argued. After discussing energy partitioning in order to identify the dominant physical mechanisms occurring in our experiments, we propose a simple damage model for porous and brittle materials. Compaction and fracture phenomena are included in the model. A failure criterion relying on Weibull theory is used to relate material tensile strength to deformation rate and damage. These constitutive relations have been implemented in an Eulerian hydrocode in order to compute numerical simulations and confront them with experiments. In this paper, we propose a simple fitting procedure of the unknown Weibull parameters based on HVI results. Good agreement is found with experimental observations of crater shapes and dimensions, as well as debris velocity. The projectile inclusion below the crater is also reproduced by the model and a mechanism is proposed for the trapping process. At least two sets of Weibull parameters can be used to match the results. Finally, we show that laser experiment simulations may discriminate in favor of one set of parameters

    Modeling the Radio and X-ray Emission of SN 1993J and SN 2002ap

    Full text link
    Modeling of radio and X-ray observations of supernovae interacting with their circumstellar media are discussed, with special application to SN 1993J and SN 2002ap. We emphasize the importance of including all relevant physical mechanisms, especially for the modeling of the radio light curves. The different conclusions for the absorption mechanism (free-free or synchrotron self-absorption), as well as departures from an ρr2\rho \propto r^{-2} CSM, as inferred by some authors, are discussed in detail. We conclude that the evidence for a variation in the mass loss rate with time is very weak. The results regarding the efficiencies of magnetic field generation and relativistic particle acceleration are summarized.Comment: 10 pages, 2 figures. Uses svmult.cls. To appear in proceedings of IAU Colloquium 192 "Supernovae (10 years of SN 1993J)", April 2003, Valencia, Spain, eds. J. M. Marcaide and K. W. Weile

    Expériences touristiques et ludiques sur les littoraux en Indonésie : des vecteurs de mutation du rapport au corps ? Etude de cas des plages de Bali, Yogyakarta, Jakarta et Manado

    Get PDF
    Le littoral est, au travers de l\u27expérience touristique, un lieu d\u27innovation du rapport au corps qui a permis, sur le socle  de deux siècles d\u27histoire contemporaine, l\u27affranchissement des normes en place et la constitution de nouvelles. La complexité de ce phénomène a été abondamment étudiée en Occident, mais demeure en grande partie à découvrir en Indonésie.  L\u27objet de cette étude est donc d\u27analyser l\u27expérience touristique et ludique indonésienne du littoral et du rapport au corps qu\u27elle induit, entre reproduction des pratiques occidentales et particularismes culturels et relgieux locaux, permettant l\u27affirmation de modèle singulier indonésien

    Non-stationary Rayleigh-Taylor instability in supernovae ejecta

    Get PDF
    The Rayleigh-Taylor instability plays an important role in the dynamics of several astronomical objects, in particular, in supernovae (SN) evolution. In this paper we develop an analytical approach to study the stability analysis of spherical expansion of the SN ejecta by using a special transformation in the co-moving coordinate frame. We first study a non-stationary spherical expansion of a gas shell under the pressure of a central source. Then we analyze its stability with respect to a no radial, non spherically symmetric perturbation of the of the shell. We consider the case where the polytropic constant of the SN shell is γ=5/3\gamma=5/3 and we examine the evolution of a arbitrary shell perturbation. The dispersion relation is derived. The growth rate of the perturbation is found and its temporal and spatial evolution is discussed. The stability domain depends on the ejecta shell thickness, its acceleration, and the perturbation wavelength.Comment: 16 page

    Supernova Interaction with a Circumstellar Medium

    Get PDF
    The explosion of a core collapse supernova drives a powerful shock front into the wind from the progenitor star. A layer of shocked circumstellar gas and ejecta develops that is subject to hydrodynamic instabilities. The hot gas can be observed directly by its X-ray emission, some of which is absorbed and re-radiated at lower frequencies by the ejecta and the circumstellar gas. Synchrotron radiation from relativistic electrons accelerated at the shock fronts provides information on the mass loss density if free-free absorption dominates at early times or the size of the emitting region if synchrotron self-absorption dominates. Analysis of the interaction leads to information on the density and structure of the ejecta and the circumstellar medium, and the abundances in these media. The emphasis here is on the physical processes related to the interaction.Comment: 22 pages, 7 figures, to appear as a Chapter in "Supernovae and Gamma-Ray Bursts," edited by K. W. Weiler (Springer-Verlag

    Spectroscopic Coronal Observations during the Total Solar Eclipse of 11 July 2010

    Full text link
    The flash spectrum of the solar chromosphere and corona was measured with a slitless spectrograph before, after, and during the totality of the solar eclipse, of 11 July 2010, at Easter Island, Chile. This eclipse took place at the beginning of the Solar Cycle 24, after an extended minimum of solar activity. The spectra taken during the eclipse show a different intensity ratio of the red and green coronal lines compared with those taken during the total solar eclipse of 1 August 2008, which took place towards the end of the Solar Cycle 23. The characteristic coronal forbidden emission line of forbidden Fe XIV (5303 {\AA}) was observed on the east and west solar limbs in four areas relatively symmetrically located with respect to the solar rotation axis. Subtraction of the continuum flash-spectrum background led to the identification of several extremely weak emission lines, including forbidden Ca XV (5694 {\AA}), which is normally detected only in regions of very high excitation, e.g., during flares or above large sunspots. The height of the chromosphere was measured spectrophotometrically, using spectral lines from light elements and compared with the equivalent height of the lower chromosphere measured using spectral lines from heavy elements.Comment: 14 pages, 8 figures, 1 table; Solar Physics, 2012, Februar

    New evidence for strong nonthermal effects in Tycho's supernova remnant

    Full text link
    For the case of Tycho's supernova remnant (SNR) we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is so close to the shock radius that it can only be explained by efficient CR acceleration which in turn makes the medium more compressible. Together with the recently determined new value Esn=1.2×1051E_{sn}=1.2\times 10^{51} erg of the SN explosion energy this also confirms our previous conclusion that a TeV gamma-ray flux of (25)×1013(2-5)\times 10^{-13} erg/(cm2^2s) is to be expected from Tycho's SNR. Chandra measurements and the HEGRA upper limit of the TeV gamma-ray flux together limit the source distance dd to 3.3d43.3\leq d\leq 4 kpc.Comment: 5 pages, 4 figures. Accepted for publication in Astrophysics and Space Science, Proc. of "The Multi-Messenger Approach to High-Energy Gamma-ray Sources (Third Workshop on the Nature of Unidentified High-Energy Sources)", Barcelona, July 4-7, 200

    Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity

    Full text link
    In various astrophysical contexts, we analyze self-similar behaviours of magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized gas under self-gravity with the specific entropy conserved along streamlines. In particular, this MHD model analysis frees the scaling parameter nn in the conventional polytropic self-similar transformation from the constraint of n+γ=2n+\gamma=2 with γ\gamma being the polytropic index and therefore substantially generalizes earlier analysis results on polytropic gas dynamics that has a constant specific entropy everywhere in space at all time. On the basis of the self-similar nonlinear MHD ordinary differential equations, we examine behaviours of the magnetosonic critical curves, the MHD shock conditions, and various asymptotic solutions. We then construct global semi-complete self-similar MHD solutions using a combination of analytical and numerical means and indicate plausible astrophysical applications of these magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac
    corecore