310,223 research outputs found

    The finite-temperature thermodynamics of a trapped unitary Fermi gas within fractional exclusion statistics

    Full text link
    We utilize a fractional exclusion statistics of Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behavior, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behavior of the isochore heat capacity for a trapped unitary Fermi gas is also analyzed.Comment: 6 pages, 6 figure

    The AEI 10 m prototype interferometer

    Get PDF
    A 10 m prototype interferometer facility is currently being set up at the AEI in Hannover, Germany. The prototype interferometer will be housed inside a 100 m^3 ultra-high vacuum envelope. Seismically isolated optical tables inside the vacuum system will be interferometrically interconnected via a suspension platform interferometer. Advanced isolation techniques will be used, such as inverted pendulums and geometrical anti-spring filters in combination with multiple-cascaded pendulum suspensions, containing an all-silica monolithic last stage. The light source is a 35 W Nd:YAG laser, geometrically filtered by passing it through a photonic crystal fibre and a rigid pre-modecleaner cavity. Laser frequency stabilisation will be achieved with the aid of a high finesse suspended reference cavity in conjunction with a molecular iodine reference. Coating thermal noise will be reduced by the use of Khalili cavities as compound end mirrors. Data acquisition and control of the experiments is based on the AdvLIGO digital control and data system. The aim of the project is to test advanced techniques for GEO 600 as well as to conduct experiments in macroscopic quantum mechanics. Reaching standard quantum-limit sensitivity for an interferometer with 100 g mirrors and subsequently breaching this limit, features most prominently among these experiments. In this paper we present the layout and current status of the AEI 10 m Prototype Interferometer project

    Strong gravitational lensing by a rotating non-Kerr compact object

    Full text link
    We study the strong gravitational lensing in the background of a rotating non-Kerr compact object with a deformed parameter ϵ\epsilon and an unbound rotation parameter aa. We find that the photon sphere radius and the deflection angle depend sharply on the parameters ϵ\epsilon and aa. For the case in which the black hole is more prolate than a Kerr black hole, the photon sphere exists only in the regime ϵϵmax\epsilon\leq\epsilon_{max} for prograde photon. The upper limit ϵmax\epsilon_{max} is a function of the rotation parameter aa. As ϵ>ϵmax\epsilon>\epsilon_{max}, the deflection angle of the light ray closing very to the naked singularity is a positive finite value, which is different from those in both the usual Kerr black hole spacetime and in the rotating naked singularity described by Janis-Newman-Winicour metric. For the oblate black hole and the retrograde photon, there does not exist such a threshold value. Modelling the supermassive central object of the Galaxy as a rotating non-Kerr compact object, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit.Comment: 16 pages, 10 figures. The corrected version to be appeared in Phys. Rev.

    Intelligent manipulation technique for multi-branch robotic systems

    Get PDF
    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system

    Cue validity and object-based attention

    Get PDF
    In a previous study, Egly, Driver, and Rafal (1994) observed both space- and object-based components of visual selective attention. However, the mechanisms underlying these two components and the relationship between them are not well understood. In the present research, with a similar paradigm, these issues were addressed by manipulating cue validity. Behavioral results indicated the presence of both space- and object-based components under high cue validity, similar to the results of Egly et al.'s study. In addition, under low cue validity, the space-based component was absent, whereas the object-based component was maintained. Further event-related potential results demonstrated an object-based effect at a sensory level over the posterior areas of brain, and a space-based effect over the anterior region. The present data suggest that the space- and object-based components reflect mainly voluntary and reflexive mechanisms, respectively

    Lattice ϕ4\phi^4 theory of finite-size effects above the upper critical dimension

    Full text link
    We present a perturbative calculation of finite-size effects near TcT_c of the ϕ4\phi^4 lattice model in a dd-dimensional cubic geometry of size LL with periodic boundary conditions for d>4d > 4. The structural differences between the ϕ4\phi^4 lattice theory and the ϕ4\phi^4 field theory found previously in the spherical limit are shown to exist also for a finite number of components of the order parameter. The two-variable finite-size scaling functions of the field theory are nonuniversal whereas those of the lattice theory are independent of the nonuniversal model parameters.One-loop results for finite-size scaling functions are derived. Their structure disagrees with the single-variable scaling form of the lowest-mode approximation for any finite ξ/L\xi/L where ξ\xi is the bulk correlation length. At TcT_c, the large-LL behavior becomes lowest-mode like for the lattice model but not for the field-theoretic model. Characteristic temperatures close to TcT_c of the lattice model, such as Tmax(L)T_{max}(L) of the maximum of the susceptibility χ\chi, are found to scale asymptotically as TcTmax(L)Ld/2T_c - T_{max}(L) \sim L^{-d/2}, in agreement with previous Monte Carlo (MC) data for the five-dimensional Ising model. We also predict χmaxLd/2\chi_{max} \sim L^{d/2} asymptotically. On a quantitative level, the asymptotic amplitudes of this large -LL behavior close to TcT_c have not been observed in previous MC simulations at d=5d = 5 because of nonnegligible finite-size terms L(4d)/2\sim L^{(4-d)/2} caused by the inhomogeneous modes. These terms identify the possible origin of a significant discrepancy between the lowest-mode approximation and previous MC data. MC data of larger systems would be desirable for testing the magnitude of the L(4d)/2L^{(4-d)/2} and L4dL^{4-d} terms predicted by our theory.Comment: Accepted in Int. J. Mod. Phys.

    Recrystallization of epitaxial GaN under indentation

    Full text link
    We report recrystallization of epitaxial (epi-) GaN(0001) film under indentation.Hardness value is measured close to 10 GPa, using a Berkovich indenter. Pop-in burst in the loading line indicates nucleation of dislocations setting in plastic motion of lattice atoms under stress field for the recrystallization process. Micro-Raman studies are used to identify the recrystallization process. Raman area mapping indicates the crystallized region. Phonon mode corresponding to E2(high) close to 570 cm-1 in the as-grown epi-GaN is redshifted to stress free value close to 567 cm-1 in the indented region. Evolution of A1(TO) and E1(TO) phonon modes are also reported to signify the recrystallization process.Comment: 10 pages, 3 figures

    Dielectric Breakdown Strength of Polyethylene Nanocomposites

    No full text
    The term “nanometric dielectrics” or simply “nanodielectrics” was introduced in 1994 when Lewis [1] anticipated the potential property changes that would benefit electrical insulation due to nano-sized inclusion. Such materials, containing homogenous dispersion of small amount (normally less than 10wt%) of nanoparticles (with at least one dimension in nanometre range) in host matrix, are of specific dielectric interest. Although much effort has been put forth to investigate the potential dielectric benefit of such newly emerging materials, many uncertainties remain unanswered, and much remains to be explored [2]. Current experimental work is to investigate the preparation of nanodielectrics via solution blending approach. Polyethylene blend composed of 20wt% of high density polyethylene (HDPE) in low density polyethylene (LDPE) is proposed as the base polymer, with varying content of nanosilica (between 0wt% and 10wt%) as the fillers. Although expensive, solution blending method, when compared with melt compounding method, is expected to provide better dispersion of nanoparticles in polymers, thus providing qualitative data in understanding the behaviour of nanodielectrics [3]. Upon successful preparation of polyethylene nanocomposites, breakdown strength based on ASTM Standard D149-87 is to be conducted to determine the feasibility of such dielectric materials in engineering point of view. Figure 1 illustrates the schematic diagram of the breakdown test configuration. The samples are placed between two 6.3mm diameter steel ball bearings immersed in silicone fluid. AC voltage at a preset ramp rate will be applied until the samples fail and the values of breakdown voltages will be recorded and analysed using two-parameter Weibull distribution. Based upon top-down research approach, the underlying physics and chemistry associated with dielectric property changes will then be explored
    corecore