research

Strong gravitational lensing by a rotating non-Kerr compact object

Abstract

We study the strong gravitational lensing in the background of a rotating non-Kerr compact object with a deformed parameter ϵ\epsilon and an unbound rotation parameter aa. We find that the photon sphere radius and the deflection angle depend sharply on the parameters ϵ\epsilon and aa. For the case in which the black hole is more prolate than a Kerr black hole, the photon sphere exists only in the regime ϵϵmax\epsilon\leq\epsilon_{max} for prograde photon. The upper limit ϵmax\epsilon_{max} is a function of the rotation parameter aa. As ϵ>ϵmax\epsilon>\epsilon_{max}, the deflection angle of the light ray closing very to the naked singularity is a positive finite value, which is different from those in both the usual Kerr black hole spacetime and in the rotating naked singularity described by Janis-Newman-Winicour metric. For the oblate black hole and the retrograde photon, there does not exist such a threshold value. Modelling the supermassive central object of the Galaxy as a rotating non-Kerr compact object, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit.Comment: 16 pages, 10 figures. The corrected version to be appeared in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions