3,441 research outputs found
Equivalence of Several Chern-Simons Matter Models
Not only does Chern-Simons (CS) coupling characterize statistics, but also
spin and scaling dimension of matter fields. We demonstrate spin transmutation
in relativistic CS matter theory, and moreover show equivalence of several
models. We study CS vector model in some details, which provide consistent
check to the assertion of the equivalence.Comment: latex, 7page, IFT-478-UNC/NUP-A-93-15 A version within the length
limit for Phys. Rev. Letts (in press
Relativistic Coulomb Sum Rules for
A Coulomb sum rule is derived for the response of nuclei to
scattering with large three-momentum transfers. Unlike the nonrelativistic
formulation, the relativistic Coulomb sum is restricted to spacelike
four-momenta for the most direct connection with experiments; an immediate
consequence is that excitations involving antinucleons, e.g., pair
production, are approximately eliminated from the sum rule. Relativistic recoil
and Fermi motion of target nucleons are correctly incorporated. The sum rule
decomposes into one- and two-body parts, with correlation information in the
second. The one-body part requires information on the nucleon momentum
distribution function, which is incorporated by a moment expansion method. The
sum rule given through the second moment (RCSR-II) is tested in the Fermi gas
model, and is shown to be sufficiently accurate for applications to data.Comment: 32 pages (LaTeX), 4 postscript figures available from the author
On spin-1 massive particles coupled to a Chern-Simons field
We study spin one particles interacting through a Chern-Simons field. In the
Born approximation, we calculate the two body scattering amplitude considering
three possible ways to introduce the interaction: (a) a Proca like model
minimally coupled to a Chern-Simons field, (b) the model obtained from (a) by
replacing the Proca's mass by a Chern-Simons term and (c) a complex
Maxwell-Chern-Simons model minimally coupled to a Chern-Simons field. In the
low energy regime the results show similarities with the Aharonov-Bohm
scattering for spin 1/2 particles. We discuss the one loop renormalization
program for the Proca's model. In spite of the bad ultraviolet behavior of the
matter field propagator, we show that, up to one loop the model is power
counting renormalizable thanks to the Ward identities satisfied by the
interaction vertices.Comment: 14 pages, 5 figures, revte
Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations
We study the anomalous flux ratio which is observed in some four-image lens
systems, where the source lies close to a fold caustic. In this case two of the
images are close to the critical curve and their flux ratio should be equal to
unity, instead in several cases the observed value differs significantly. The
most plausible solution is to invoke the presence of substructures, as for
instance predicted by the Cold Dark Matter scenario, located near the two
images. In particular, we analyze the two fold lens systems PG1115+080 and
B1555+375, for which there are not yet satisfactory models which explain the
observed anomalous flux ratios. We add to a smooth lens model, which reproduces
well the positions of the images but not the anomalous fluxes, one or two
substructures described as singular isothermal spheres. For PG1115+080 we
consider a smooth model with the influence of the group of galaxies described
by a SIS and a substructure with mass as well as a
smooth model with an external shear and one substructure with mass . For B1555+375 either a strong external shear or two substructures
with mass reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in
Astrophysics & Space Scienc
Controlling anomalous stresses in soft field-responsive systems
We report a new phenomenon occurring in field-responsive suspensions:
shear-induced anomalous stresses. Competition between a rotating field and a
shear flow originates a multiplicity of anomalous stress behaviors in
suspensions of bounded dimers constituted by induced dipoles. The great variety
of stress regimes includes non-monotonous behaviors, multi-resonances, negative
viscosity effect and blockades. The reversibility of the transitions between
the different regimes and the self-similarity of the stresses make this
phenomenon controllable and therefore applicable to modify macroscopic
properties of soft condensed matter phasesComment: 5 pages, 6 figures, submitted to PR
Lattice-Boltzmann Method for Geophysical Plastic Flows
We explore possible applications of the Lattice-Boltzmann Method for the
simulation of geophysical flows. This fluid solver, while successful in other
fields, is still rarely used for geotechnical applications. We show how the
standard method can be modified to represent free-surface realization of
mudflows, debris flows, and in general any plastic flow, through the
implementation of a Bingham constitutive model. The chapter is completed by an
example of a full-scale simulation of a plastic fluid flowing down an inclined
channel and depositing on a flat surface. An application is given, where the
fluid interacts with a vertical obstacle in the channel.Comment: in W. Wu, R.I. Borja (Edts.) Recent advances in modelling landslides
and debris flow, Springer Series in Geomechanics and Geoengineering (2014),
ISBN 978-3-319-11052-3, pp. 131-14
Shear viscosity of the Quark-Gluon Plasma from a virial expansion
We calculate the shear viscosity in the quark-gluon plasma (QGP) phase
within a virial expansion approach with particular interest in the ratio of
to the entropy density , i.e. . The virial expansion approach
allows us to include the interactions between the partons in the deconfined
phase and to evaluate the corrections to a single-particle partition function.
In the latter approach we start with an effective interaction with parameters
fixed to reproduce thermodynamical quantities of QCD such as energy and/or
entropy density. We also directly extract the effective coupling \ga_{\rm V}
for the determination of . Our numerical results give a ratio
at the critical temperature , which is very
close to the theoretical bound of . Furthermore, for temperatures
the ratio is in the range of the present
experimental estimates at RHIC. When combining our results for
in the deconfined phase with those from chiral perturbation theory or
the resonance gas model in the confined phase we observe a pronounced minimum
of close to the critical temperature .Comment: Published in Eur. Phys. J. C, 7 pages, 2 figures, 3 tabl
Dirac-like Monopoles in Three Dimensions and Their Possible Influences on the Dynamics of Particles
Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and
Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed
through a dimensional reduction of four-dimensional electrodynamics with
electric and magnetic sources. Some general properties and similarities of them
when are considered in Minkowski or Euclidian space are mentioned. However, by
virtue of the structure of the space-time in which they are considered a number
of differences among them take place. Furthermore, we pay attention to some
consequences of these objects when acting upon usual particles. Among other
subjects, special attention is given to the study of a Lorentz-violating
non-minimal coupling between neutral fermions and the field generated by a
monopole alone. In addition, an analogue of the Aharonov-Casher effect is
discussed in this framework.Comment: 20 pages. Latex format. No figures. Accepted for publication in Phys.
Rev.
New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces
We consider a singular Liouville equation on a compact surface, arising from
the study of Chern-Simons vortices in a self dual regime. Using new improved
versions of the Moser-Trudinger inequalities (whose main feature is to be
scaling invariant) and a variational scheme, we prove new existence results.Comment: to appear in GAF
High-resolution x-ray study of the nematic - smectic-A and smectic-A - smectic-C transitions in 8barS5-aerosil gels
The effects of dispersed aerosil nanoparticles on two of the phase
transitions of the thermotropic liquid crystal material
4-n-pentylphenylthiol-4'-n-octyloxybenzoate 8barS5 have been studied using
high-resolution x-ray diffraction techniques. The aerosils hydrogen bond
together to form a gel which imposes a weak quenched disorder on the liquid
crystal. The smectic-A fluctuations are well characterized by a two-component
line shape representing thermal and random-field contributions. An elaboration
on this line shape is required to describe the fluctuations in the smectic-C
phase; specifically the effect of the tilt on the wave-vector dependence of the
thermal fluctuations must be explicitly taken into account. Both the magnitude
and the temperature dependence of the smectic-C tilt order parameter are
observed to be unaffected by the disorder. This may be a consequence of the
large bare smectic correlation length in the direction of modulation for this
transition. These results show that the understanding developed for the nematic
to smectic-A transition for octylcyanobiphenyl (8CB) and octyloxycyanobiphenyl
(8OCB) liquid crystals with quenched disorder can be extended to quite
different materials and transitions.Comment: 7 pages, 8 figure
- …
