310 research outputs found

    Gluco-incretins regulate beta-cell glucose competence by epigenetic silencing of Fxyd3 expression.

    Get PDF
    BACKGROUND/AIMS: Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms. METHODS: We searched for genes that were differentially expressed in islets from control and Glp1r-/-; Gipr-/- (dKO) mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed. RESULTS: Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation. CONCLUSIONS/INTERPRETATION: Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes

    Perspective of Internet Poker Players on Harm-Reduction Strategies: A Cross-Sectional Study.

    Get PDF
    Background: Internet gambling may increase rates of gambling harm. This current study aimed to assess Internet poker players' views on various harm-reduction (HR) strategies. It also examined differences in these views according to the games played (poker only vs. poker plus other gambling activities), indebtedness, and problem gambling severity. Methods: Internet poker players (n = 311; 94.2% Male) recruited online between 2012 and 2014 were included in the analyses and completed a survey on indebtedness, problem gambling severity index, and ten statements regarding HR features. Results: Among the whole sample, the most frequently endorsed HR strategy was setting money limits, specialized online help, and peer support forums. People who play poker only (70%) are less prone to endorse the utility of information on excessive gambling and specialized healthcare centers. No differences were found between those people with debt versus those without regarding HR assessment. Participants with severe problem gambling were more skeptical about HR strategies based on information on specialized healthcare centers. Conclusion: Setting money limits, online help, and peer support forums are the most commonly endorsed strategies. Future research is needed to evaluate the effectiveness of online harm reduction strategies

    Selective Ion Changes during Spontaneous Mitochondrial Transients in Intact Astrocytes

    Get PDF
    The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na+ concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na+ concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca2+ concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg2+ concentration accompanying mitochondrial Na+ spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na+-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication

    Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue.

    Get PDF
    Lactate can be used by neurons as an energy substrate to support their activity. Evidence suggests that lactate also acts on a metabotropic receptor called HCAR1, first described in the adipose tissue. Whether HCAR1 also modulates neuronal circuits remains unclear. In this study, using qRT-PCR, we show that HCAR1 is present in the human brain of epileptic patients who underwent resective surgery. In brain slices from these patients, pharmacological HCAR1 activation using a non-metabolized agonist decreased the frequency of both spontaneous neuronal Ca <sup>2+</sup> spiking and excitatory post-synaptic currents (sEPSCs). In mouse brains, we found HCAR1 expression in different regions using a fluorescent reporter mouse line and in situ hybridization. In the dentate gyrus, HCAR1 is mainly present in mossy cells, key players in the hippocampal excitatory circuitry and known to be involved in temporal lobe epilepsy. By using whole-cell patch clamp recordings in mouse and rat slices, we found that HCAR1 activation causes a decrease in excitability, sEPSCs, and miniature EPSCs frequency of granule cells, the main output of mossy cells. Overall, we propose that lactate can be considered a neuromodulator decreasing synaptic activity in human and rodent brains, which makes HCAR1 an attractive target for the treatment of epilepsy

    Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment

    Get PDF
    The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution

    A tryptophan-rich peptide acts as a transcription activation domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic transcription activators normally consist of a sequence-specific DNA-binding domain (DBD) and a transcription activation domain (AD). While many sequence patterns and motifs have been defined for DBDs, ADs do not share easily recognizable motifs or structures.</p> <p>Results</p> <p>We report herein that the N-terminal domain of yeast valyl-tRNA synthetase can function as an AD when fused to a DNA-binding protein, LexA, and turn on reporter genes with distinct LexA-responsive promoters. The transcriptional activity was mainly attributed to a five-residue peptide, WYDWW, near the C-terminus of the N domain. Remarkably, the pentapeptide <it>per se </it>retained much of the transcriptional activity. Mutations which substituted tryptophan residues for both of the non-tryptophan residues in the pentapeptide (resulting in W<sub>5</sub>) significantly enhanced its activity (~1.8-fold), while mutations which substituted aromatic residues with alanine residues severely impaired its activity. Accordingly, a much more active peptide, pentatryptophan (W<sub>7</sub>), was produced, which elicited ~3-fold higher activity than that of the native pentapeptide and the N domain. Further study indicated that W<sub>7 </sub>mediates transcription activation through interacting with the general transcription factor, TFIIB.</p> <p>Conclusions</p> <p>Since W<sub>7 </sub>shares no sequence homology or features with any known transcription activators, it may represent a novel class of AD.</p

    Alcohol-related brief intervention in patients treated for opiate or cocaine dependence: a randomized controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the importance of heavy drinking and alcohol dependence among patients with opiate and cocaine dependence, few studies have evaluated specific interventions within this group. The aim of the present study was to evaluate the impact of screening with the Alcohol Use Disorders Identification Test (AUDIT) and of brief intervention (BI) on alcohol use in a sample of patients treated for opioid or cocaine dependence in a specialized outpatient clinic.</p> <p>Methods</p> <p>Adult outpatients treated for opioid or cocaine dependence in Switzerland were screened for excessive alcohol drinking and dependence with the AUDIT. Patients with AUDIT scores that indicated excessive drinking or dependence were randomized into two groups--treatment as usual or treatment as usual together with BI--and assessed at 3 months and 9 months.</p> <p>Results</p> <p>Findings revealed a high rate (44%) of problematic alcohol use (excessive drinking and dependence) among patients with opiate and cocaine dependence. The number of drinks per week decreased significantly between T0 (inclusion) and T3 (month 3). A decrease in average AUDIT scores was observed between T0 and T3 and between T0 and T9 (month 9). No statistically significant difference between treatment groups was observed.</p> <p>Conclusions</p> <p>In a substance abuse specialized setting, screening for alcohol use with the AUDIT, followed by feedback on the score, and use of alcohol BI are both possibly useful strategies to induce changes in problematic alcohol use. Definitive conclusions cannot, however, be drawn from the study because of limitations such as lack of a naturalistic group. An important result of the study is the excellent internal consistency of AUDIT in a population treated for opiate or cocaine dependence.</p
    corecore