14 research outputs found

    Interactions entre levures Saccharomyces cerevisiae et non-Saccharomyces en vinification. : Incidence de facteurs de l’environnement.

    Get PDF
    Non-Saccharomyces yeasts, naturally found in grape must, can impact wine quality positively or negatively. In recent years, the use of mixed cultures as starters (association of S. cerevisiae species and other species) such as the couple Saccharomyces cerevisiae/Torulaspora delbrueckii is proposed to winemakers. Interactions between these two species have been studied with two commercial strains, T. delbrueckii Zymaflore Alpha and S. cerevisiae Zymaflore X5 (Laffort). Alcoholic fermentations were carried out in a fermentor with double compartment allowing a physical separation of yeasts and preserving the homogeneity culture medium. The results highlighted that the physical separation impacts the growth of both strains, suggesting interactions of type cell-cell contact between these two strains. If a large majority of winemakers use selected yeasts strains, some of them chose to favor native yeasts, S. cerevisiae species and non- Saccharomyces species. The impact of two environmental factors was investigated on five non-Saccharomyces species (T. delbrueckii, Metschnikowia spp., Candida zemplinina, Hanseniaspora uvarum, Pichia kluyveri) and two strains of S. cerevisiae (one with short fermentation lag phase, one with long fermentation lag phase), in pure and mixed cultures. The inoculation with S. cerevisiae with a long fermentation lag phase in a must saturated with CO2 allowed to stimulate some of non-Saccharomyces which present an interest in winemaking (T. delbrueckii/P. kluyveri) and inhibit the undesirable ones (H. uvarum, C. zemplinina).Les levures non-Saccharomyces, naturellement présentes dans les moûts, peuvent impacter positivement ou négativement la qualité des vins. Depuis quelques années, l’utilisation de cultures mixtes comme starters, associant une souche de Saccharomyces cerevisiae et une souche d’une autre espèce est proposée aux œnologues. C’est le cas du couple S. cerevisiae/Torulaspora delbrueckii. L’étude des interactions entre la souche T. delbrueckii Zymaflore Alpha et S. cerevisiae Zymaflore X5, de la société Laffort, a été réalisée. Les fermentations alcooliques ont été effectuées dans un réacteur à double compartiment permettant la séparation physique des levures tout en conservant l’homogénéité du milieu de culture. Les résultats ont mis en évidence que la séparation impacte la croissance des deux souches suggérant l’existence d’interactions de type cell-cell contact entre ces deux souches. Si une grande majorité de praticiens utilise désormais les levures sélectionnées, certains ont fait le choix de favoriser les populations autochtones de levures S .cerevisiae et de levures non-Saccharomyces. L’incidence de deux facteurs de l’environnement a été étudié sur un mélange de cinq espèces de non-Saccharomyces (T. delbrueckii, Metschnikowia spp., Candida zemplinina, Hanseniaspora uvarum, Pichia kluyveri) et de deux souches de S. cerevisiae (une à phase de latence courte, une à phase de latence longue) en cultures pures et en mélange. L’inoculation de la souche de S. cerevisiae à phase de latence longue dans un moût saturé en CO2 permet de stimuler les levures non-Saccharomyces d’intérêt (T. delbrueckii/P. kluyveri) tout en inhibant les espèces indésirables (H. uvarum, C. zemplinina)

    Interactions between S. cerevisiae and non-Saccharomyces yeasts in winemaking. : Impact of environmental factors.

    No full text
    Les levures non-Saccharomyces, naturellement présentes dans les moûts, peuvent impacter positivement ou négativement la qualité des vins. Depuis quelques années, l’utilisation de cultures mixtes comme starters, associant une souche de Saccharomyces cerevisiae et une souche d’une autre espèce est proposée aux œnologues. C’est le cas du couple S. cerevisiae/Torulaspora delbrueckii. L’étude des interactions entre la souche T. delbrueckii Zymaflore Alpha et S. cerevisiae Zymaflore X5, de la société Laffort, a été réalisée. Les fermentations alcooliques ont été effectuées dans un réacteur à double compartiment permettant la séparation physique des levures tout en conservant l’homogénéité du milieu de culture. Les résultats ont mis en évidence que la séparation impacte la croissance des deux souches suggérant l’existence d’interactions de type cell-cell contact entre ces deux souches. Si une grande majorité de praticiens utilise désormais les levures sélectionnées, certains ont fait le choix de favoriser les populations autochtones de levures S .cerevisiae et de levures non-Saccharomyces. L’incidence de deux facteurs de l’environnement a été étudié sur un mélange de cinq espèces de non-Saccharomyces (T. delbrueckii, Metschnikowia spp., Candida zemplinina, Hanseniaspora uvarum, Pichia kluyveri) et de deux souches de S. cerevisiae (une à phase de latence courte, une à phase de latence longue) en cultures pures et en mélange. L’inoculation de la souche de S. cerevisiae à phase de latence longue dans un moût saturé en CO2 permet de stimuler les levures non-Saccharomyces d’intérêt (T. delbrueckii/P. kluyveri) tout en inhibant les espèces indésirables (H. uvarum, C. zemplinina).Non-Saccharomyces yeasts, naturally found in grape must, can impact wine quality positively or negatively. In recent years, the use of mixed cultures as starters (association of S. cerevisiae species and other species) such as the couple Saccharomyces cerevisiae/Torulaspora delbrueckii is proposed to winemakers. Interactions between these two species have been studied with two commercial strains, T. delbrueckii Zymaflore Alpha and S. cerevisiae Zymaflore X5 (Laffort). Alcoholic fermentations were carried out in a fermentor with double compartment allowing a physical separation of yeasts and preserving the homogeneity culture medium. The results highlighted that the physical separation impacts the growth of both strains, suggesting interactions of type cell-cell contact between these two strains. If a large majority of winemakers use selected yeasts strains, some of them chose to favor native yeasts, S. cerevisiae species and non- Saccharomyces species. The impact of two environmental factors was investigated on five non-Saccharomyces species (T. delbrueckii, Metschnikowia spp., Candida zemplinina, Hanseniaspora uvarum, Pichia kluyveri) and two strains of S. cerevisiae (one with short fermentation lag phase, one with long fermentation lag phase), in pure and mixed cultures. The inoculation with S. cerevisiae with a long fermentation lag phase in a must saturated with CO2 allowed to stimulate some of non-Saccharomyces which present an interest in winemaking (T. delbrueckii/P. kluyveri) and inhibit the undesirable ones (H. uvarum, C. zemplinina)

    Appl. microbiol. biotechnol.

    No full text
    Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine

    J Microbiol Methods

    No full text
    The existing methods for testing proteolytic activity are time consuming, quite difficult to perform, and do not allow real-time monitoring. Proteases have attracted considerable interest in winemaking and some yeast species naturally present in grape must, such as Metschnikowia pulcherrima, are capable of expressing this activity. In this study, a new test is proposed for measuring proteolytic activity directly in fermenting grape must, using azocasein, a chromogenic substrate. Several yeast strains were tested and differences in proteolytic activity were observed. Moreover, analysis of grape must proteins in wines revealed that protease secreted by Metschnikowia strains may be active against wine proteins

    Corrigendum to “A new method for monitoring the extracellular proteolytic activity of wine yeasts during alcoholic fermentation of grape must” [J. Microbiol. Methods 119 (2015) 176–179]

    No full text
    Corrigendum to “A new method for monitoring the extracellular proteolytic activity of wine yeasts during alcoholic fermentation of grape must” [J. Microbiol. Methods 119 (2015) 176–179

    Food Microbiol

    No full text
    Lot of articles report on the impact of polyphenols on wine lactic acid bacteria, but it is clear that the results still remain confusing, because the system is complicated both in term of chemical composition and of diversity of strains. In addition, red wines polyphenols are multiple, complex and reactive molecules. Moreover, the final composition of wine varies according to grape variety and to extraction during winemaking. Therefore it is nearly impossible to deduce their effects on bacteria from experiments in oversimplified conditions. In the present work, effect of tannins preparations, currently considered as possible technological adjuvants, was assessed on growth and malolactic fermentation for two malolactic starters. Experiments were conducted in a laboratory medium and in a white wine. Likewise, impact of total polyphenolic extracts obtained from different grape variety red wines was evaluated in the white wine as culture medium. As expected growth and activity of both strains were affected whatever the additions. Results suggest some interpretations to the observed impacts on bacterial populations. Influence of tannins should be, at least partly, due to redox potential change. Results on wine extracts show the need for investigating the bacterial metabolism of some galloylated molecules. Indeed, they should play on bacterial physiology and probably affect the sensory qualities of wines

    Restriction patterns of D1/D2 amplicon generated by <i>Alu</i>I (A) or <i>Pst</i>I (B) for <i>Torulaspora</i> species.

    No full text
    <p>A: For <i>Alu</i>I restriction, four patterns were produced: 170 pb+160 pb+80 pb+70 pb+55 pb+40 pb+30 pb for <i>T. delbrueckii</i> and <i>T. quercuum</i>; 170 pb+160 pb+120 pb+70 pb+55 pb+30 pb for <i>T. maleeae</i> and <i>T. indica</i>; 170 pb+160 pb+95 pb+80 pb+70 pb+30 pb for <i>T. franciscae</i>, <i>T. microellipsoides</i>, <i>T. pretoriensis</i>; and 330 pb+170 pb+75 pb+30 pb for <i>T. globosa</i>. B: For <i>Pst</i>I restriction, two patterns were produced: 600pb (no restriction) for <i>T. maleeae</i>, <i>T. quercuum</i>, <i>T. indica</i>, <i>T. microellipsoides</i> and <i>T. globosa</i>; or 480 pb+120 pb for <i>T. delbrueckii</i>, <i>T. franciscae</i> and <i>T. pretoriensis</i>. Blue and pink bands represent internal upper and lower markers respectively.</p

    Genetic relationships between 110 <i>T. delbrueckii</i> strains using eight microsatellite markers.

    No full text
    <p>A: Dendrogram tree built using Bruvo's distance and Neighbor-Joining's clustering. The robustness of the node was assessed using multiscale bootstrap resampling and approximated unbiased test (n = 1000 boots). Bootstrap results are shown only for the main nodes. B: Barplot representing structure results (K = 5). The posterior probability (y-axis) of assignment of each strain (vertical bar) to ancestral groups is shown by colors (dark green, green, blue, red and darkblue colors represent each 5 ancestral populations). Heterozygous strains, meaning strains with at least one heterozygote locus, are indicated by black stars.</p

    Microsatellite loci for <i>Torulaspora delbrueckii</i> genotyping.

    No full text
    <p>Allele size in pb. Forward primers were tailed on 5′-end with M13 sequence (CACGACGTTGTAAAACGAC). Tm is the melting temperature used for microsatellite amplification (see Materials and Methods). CLIB230<sup>T</sup> is synonymous of CBS 1146<sup>T</sup>.</p

    Genetic relationships between 110 <i>T. delbrueckii</i> strains using eight microsatellite markers.

    No full text
    <p>A: Dendrogram tree built using Bruvo's distance and Neighbor-Joining's clustering. The robustness of the node was assessed using multiscale bootstrap resampling and approximated unbiased test (n = 1000 boots). Bootstrap results are shown only for the main nodes. B: Barplot representing structure results (K = 5). The posterior probability (y-axis) of assignment of each strain (vertical bar) to ancestral groups is shown by colors (dark green, green, blue, red and darkblue colors represent each 5 ancestral populations). Heterozygous strains, meaning strains with at least one heterozygote locus, are indicated by black stars.</p
    corecore