211 research outputs found

    630-mV open circuit voltage, 12% efficient n-Si liquid junction

    Get PDF
    We report the first experimental observation of a semiconductor/liquid junction whose open circuit voltage Voc is controlled by bulk diffusion/recombination processes. Variation in temperature, minority-carrier diffusion length, and/or in majority-carrier concentration produces changes in the Voc of the n-Si/CH3OH interface in accord with bulk recombination/diffusion theory. Under AM2 irradiation conditions, the extrapolated intercept at 0 K of Voc vs T plots yields activation energies for the dominant recombination process of 1.1–1.2 eV, in accord with the 1.12-eV band gap of Si. A crucial factor in achieving optimum performance of the n-Si/CH3OH interface is assigned to photoelectrochemical oxide formation, which passivates surface recombination sites at the n-Si/CH3OH interface and minimizes deleterious effects of pinning of the Fermi level at the Si/CH3OH junction. Controlled Si oxide growth, combined with optimization of bulk crystal parameters in accord with diffusion theory, is found to yield improved photoelectrode output parameters, with 12.0±1.5% AM2 efficiencies and AM1 Voc values of 632–640 mV for 0.2-Ω cm Si materials

    Observation of metastable Aβ amyloid protofibrils by atomic force microscopy

    Get PDF
    AbstractBackground: Brain amyloid plaque, a diagnostic feature of Alzheimer's disease (AD), contains an insoluble fibrillar core that is composed primarily of variants of the β-amyloid protein (Aβ). As Aβ amyloid fibrils may initiate neurodegeneration, the inhibition of fibril formation is a possible therapeutic strategy. Very little is known about the early steps of the process, however.Results: Atomic force microscopy was used to follow amyloid fibril formation in vitro by the Aβ variants Aβ1-40 and Aβ1-42. Both variants first form small ordered aggregates that grow slowly and then rapidly disappear, while prototypical amyloid fibrils of two discrete morphologies appear. Aβ1-42 aggregates much more rapidly than Aβ1-40, which is consistent with its connection to early-onset AD. We propose that the metastable intermediate species be called Aβ amyloid protofibrils.Conclusions: Aβ protofibrils are likely to be intermediates in the in vitro assembly of Aβ amyloid fibrils, but their in vivo role has yet to be determined. Numerous reports of a nonfibrillar form of Aβ aggregate in the brains of individuals who are predisposed to AD suggest the existence of a precursor form, possibly the protofibril. Thus, stabilization of Aβ protofibrils may be a useful therapeutic strategy

    Growth and Transport Properties of Complementary Germanium Nanowire Field Effect Transistors

    Get PDF
    n- and p-type Ge nanowires were synthesized by a multistep process in which axial elongation, via vapor–liquid–solid (VLS) growth, and doping were accomplished in separate chemical vapor deposition steps. Intrinsic, single-crystal, Ge nanowires prepared by Au nanocluster-mediated VLS growth were surface-doped in situ using diborane or phosphine, and then radial growth of an epitaxial Ge shell was used to cap the dopant layer. Field-effect transistors prepared from these Ge nanowires exhibited on currents and transconductances up to 850 µA/µm and 4.9 µA/V, respectively, with device yields of \u3e85%

    Covalently Functionalized Nanotubes as Nanometer-Sized Probes in Chemistry and Biology

    Get PDF
    Carbon nanotubes combine a range of properties that make them well suited for use as probe tips in applications such as atomic force microscopy (AFM)1, 2, 3. Their high aspect ratio, for example, opens up the possibility of probing the deep crevices4 that occur in microelectronic circuits, and the small effective radius of nanotube tips significantly improves the lateral resolution beyond what can be achieved using commercial silicon tips5. Another characteristic feature of nanotubes is their ability to buckle elastically4, 6, which makes them very robust while limiting the maximum force that is applied to delicate organic and biological samples. Earlier investigations into the performance of nanotubes as scanning probe microscopy tips have focused on topographical imaging, but a potentially more significant issue is the question of whether nanotubes can be modified to create probes that can sense and manipulate matter at the molecular level7. Here we demonstrate that nanotube tips with the capability of chemical and biological discrimination can be created with acidic functionality and by coupling basic or hydrophobic functionalities or biomolecular probes to the carboxyl groups that are present at the open tip ends. We have used these modified nanotubes as AFM tips to titrate the acid and base groups, to image patterned samples based on molecular interactions, and to measure the binding force between single protein ligand pairs. As carboxyl groups are readily derivatized by a variety of reactions8, the preparation of a wide range of functionalized nanotube tips should be possible, thus creating molecular probes with potential applications in many areas of chemistry and biology.Chemistry and Chemical Biolog

    Covalently Functionalized Nanotubes as Nanometer-Sized Probes in Chemistry and Biology

    Get PDF
    Carbon nanotubes combine a range of properties that make them well suited for use as probe tips in applications such as atomic force microscopy (AFM)1, 2, 3. Their high aspect ratio, for example, opens up the possibility of probing the deep crevices4 that occur in microelectronic circuits, and the small effective radius of nanotube tips significantly improves the lateral resolution beyond what can be achieved using commercial silicon tips5. Another characteristic feature of nanotubes is their ability to buckle elastically4, 6, which makes them very robust while limiting the maximum force that is applied to delicate organic and biological samples. Earlier investigations into the performance of nanotubes as scanning probe microscopy tips have focused on topographical imaging, but a potentially more significant issue is the question of whether nanotubes can be modified to create probes that can sense and manipulate matter at the molecular level7. Here we demonstrate that nanotube tips with the capability of chemical and biological discrimination can be created with acidic functionality and by coupling basic or hydrophobic functionalities or biomolecular probes to the carboxyl groups that are present at the open tip ends. We have used these modified nanotubes as AFM tips to titrate the acid and base groups, to image patterned samples based on molecular interactions, and to measure the binding force between single protein–ligand pairs. As carboxyl groups are readily derivatized by a variety of reactions8, the preparation of a wide range of functionalized nanotube tips should be possible, thus creating molecular probes with potential applications in many areas of chemistry and biology

    Macroporous nanowire nanoelectronic scaffolds for synthetic tissues

    Get PDF
    available in PMC 2013 April 11.The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological microenvironments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-standing nanowire nanoelectronic scaffolds (nanoES), and their hybrids with synthetic or natural biomaterials. 3D macroporous nanoES mimic the structure of natural tissue scaffolds, and they were formed by self-organization of coplanar reticular networks with built-in strain and by manipulation of 2D mesh matrices. NanoES exhibited robust electronic properties and have been used alone or combined with other biomaterials as biocompatible extracellular scaffolds for 3D culture of neurons, cardiomyocytes and smooth muscle cells. Furthermore, we show the integrated sensory capability of the nanoES by real-time monitoring of the local electrical activity within 3D nanoES/cardiomyocyte constructs, the response of 3D-nanoES-based neural and cardiac tissue models to drugs, and distinct pH changes inside and outside tubular vascular smooth muscle constructs.National Institutes of Health (U.S.) (Director’s Pioneer award)McKnight Foundation (Technological Innovations in Neurosciences Award)Boston Children's Hospital (Biotechnology Research Endowment)National Institutes of Health (U.S.) (DE013023)National Institutes of Health (U.S.) (DE016516

    Coulomb Gap and Correlated Vortex Pinning in Superconductors

    Full text link
    The positions of columnar pins and magnetic flux lines determined from a decoration experiment on BSCCO were used to calculate the single--particle density of states at low temperatures in the Bose glass phase. A wide Coulomb gap is found, with gap exponent s≈1.2s \approx 1.2, as a result of the long--range interaction between the vortices. As a consequence, the variable--range hopping transport of flux lines is considerably reduced with respect to the non--interacting case, the effective Mott exponent being enhanced from p0=1/3p_0 = 1/3 to peff≈0.5p_{\rm eff} \approx 0.5 for this specific experiment.Comment: 10 pages, Revtex, 4 figures appended as uu-encoded postscript files, also available as hardcopies from [email protected]

    Structure of Flux Line Lattices with Weak Disorder at Large Length Scales

    Full text link
    Dislocation-free decoration images containing up to 80,000 vortices have been obtained on high quality Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} superconducting single crystals. The observed flux line lattices are in the random manifold regime with a roughening exponent of 0.44 for length scales up to 80-100 lattice constants. At larger length scales, the data exhibit nonequilibrium features that persist for different cooling rates and field histories.Comment: 4 pages, 3 gif images, to appear in PRB rapid communicatio

    Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires

    Get PDF
    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and http://cmliris.harvard.ed
    • …
    corecore