46 research outputs found

    The Promotion of Mechanical Properties by Bone Ingrowth in Additive-Manufactured Titanium Scaffolds

    Get PDF
    Although the initial mechanical properties of additive-manufactured (AM) metal scaffolds have been thoroughly studied and have become a cornerstone in the design of porous orthopaedic implants, the potential promotion of the mechanical properties of the scaffolds by bone ingrowth has barely been studied. In this study, the promotion of bone ingrowth on the mechanical properties of AM titanium alloy scaffolds was investigated through in vivo experiments and numerical simulation. On one hand, the osseointegration characteristics of scaffolds with architectures of body-centred cubic (BCC) and diamond were compared through animal experiments in which the mechanical properties of both scaffolds were not enhanced by the four-week implantation. On the other hand, the influences of the type and morphology of bone tissue in the BCC scaffolds on its mechanical properties were investigated by the finite element model of osseointegrated scaffolds, which was calibrated by the results of biomechanical testing. Significant promotion of the mechanical properties of AM metal scaffolds was only found when cortical bone filled the pores in the scaffolds. This paper provides a numerical prediction method to investigate the effect of bone ingrowth on the mechanical properties of AM porous implants, which might be valuable for the design of porous implants

    Fused Deposition Modeling PEEK Implants for Personalized Surgical Application: From Clinical Need to Biofabrication

    Get PDF
    Three-dimensional printing (3DP) technology is suitable for manufacturing personalized orthopedic implants for reconstruction surgery. Compared with traditional titanium, polyether-ether-ketone (PEEK) is the ideal material for 3DP orthopedic implants due to its various advantages, including thermoplasticity, thermal stability, high chemical stability, and radiolucency suitable elastic modulus. However, it is challenging to develop a well-designed method and manufacturing technique to meet the clinical needs because it requires elaborate details and interplays with clinical work. Furthermore, establishing surgical standards for new implants requires many clinical cases and an accumulation of surgical experience. Thus, there are few case reports on using 3DP PEEK implants in clinical practice. Herein, we formed a team with a lot of engineers, scientists, and doctors and conducted a series of studies on the 3DP PEEK implants for chest wall reconstruction. First, the thoracic surgeons sort out the specific types of chest wall defects. Then, the engineers designed the shape of the implant and performed finite element analysis for every implant. To meet the clinical needs and mechanical requirements of implants, we developed a new fused deposition modeling technology to make personalized PEEK implants. Overall, the thoracic surgeons have used 114 personalized 3DP PEEK implants to reconstruct the chest wall defect and further established the surgical standards of the implants as part of the Chinese clinical guidelines. The surface modification technique and composite process are developed to overcome the new clinical problems of implant-related complications after surgery. Finally, the major challenges and possible solutions to translating 3DP PEEK implants into a mature and prevalent clinical product are discussed in the paper

    Stress Shielding and Bone Resorption of Press-Fit Polyether–Ether–Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study

    Get PDF
    Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether–ether–ketone (PEEK) hip prostheses, produced by fused deposition modelling to minimize the stress difference after the hip replacement. The stress shielding effect and the potential bone resorption of the PEEK implant was investigated through both experimental tests and FE simulation. A generic Ti6Al4V implant was incorporated in this study to allow fair comparison as control group. Attributed to the low stiffness, the proposed PEEK implant showed a more natural stress distribution, less stress shielding (by 104%), and loss in bone mass (by 72%) compared with the Ti6Al4V implant. The stiffness of the Ti6Al4V and the PEEK implant were measured through compression tests to be 2.76 kN/mm and 0.276 kN/mm. The factor of safety for the PEEK implant in both static and dynamic loading scenarios were obtained through simulation. Most of the regions in the PEEK implant were tested to be safe (FoS larger than 1) in terms of representing daily activities (2300 N), while the medial neck and distal restriction point of the implant attracts large von Mises stress 82 MPa and 76 MPa, respectively, and, thus, may possibly fail during intensive activities by yield and fatigue. Overall, considering the reduction in stress shielding and bone resorption in cortical bone, PEEK could be a promising material for the patient–specific femoral implants

    Finite Element Analysis of A Retrieved Custom-Made Knee Prosthesis

    Get PDF
    Custom-made knee prostheses have been widely used to reconstruct the function of the lower limb in bone tumor resections. A custom-made tumor knee prosthesis was retrieved on account of prosthesis loosening post-surgery. Misalignment between the anatomical axis of the femur and the axis of the femoral stem as well as the material loss at the posterior region of the tibial plateau were considered to be the primary causes of the failure. Based on this hypothesis, finite element analysis was performed to investigate the contact mechanics of the prosthesis while implanted in vivo. The maximum deformation at the femur was 0.59 and 1.17 mm when the misalignment angle was 3° and 6°, respectively. Besides, the maximum contact pressure at the tibial plateau was 44.88 MPa at an extremely high flexion of angle 135° during squatting or kneeling. Uneven stress distribution at the femur, which came from the misalignment, was the main cause of loosening, which was aggravated indirectly with the material loss at the posterior region of the tibial plateau. Optimized prosthesis design and appropriate selection, with accurate surgical positioning and targeted rehabilitation training programme are important considerations for prolonging life-span of prostheses in vivo

    Stress shielding and bone resorption of press-fit polyether-ether-ketone (PEEK) hip prosthesis: a sawbone model study

    Get PDF
    Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether-ether-ketone (PEEK) hip prostheses, produced by fused deposition modelling to minimize the stress difference after the hip replacement. The stress shielding effect and the potential bone resorption of the PEEK implant was investigated through both experimental tests and FE simulation. A generic Ti6Al4V implant was incorporated in this study to allow fair comparison as control group. Attributed to the low stiffness, the proposed PEEK implant showed a more natural stress distribution, less stress shielding (by 104%), and loss in bone mass (by 72%) compared with the Ti6Al4V implant. The stiffness of the Ti6Al4V and the PEEK implant were measured through compression tests to be 2.76 kN/mm and 0.276 kN/mm. The factor of safety for the PEEK implant in both static and dynamic loading scenarios were obtained through simulation. Most of the regions in the PEEK implant were tested to be safe (FoS larger than 1) in terms of representing daily activities (2300 N), while the medial neck and distal restriction point of the implant attracts large von Mises stress 82 MPa and 76 MPa, respectively, and, thus, may possibly fail during intensive activities by yield and fatigue. Overall, considering the reduction in stress shielding and bone resorption in cortical bone, PEEK could be a promising material for the patient-specific femoral implants

    Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network

    Get PDF
    Although accumulating evidence has provided insight into the various functions of long-non-coding RNAs (lncRNAs), the exact functions of the majority of such transcripts are still unknown. Here, we report the first computational annotation of lncRNA functions based on public microarray expression profiles. A coding–non-coding gene co-expression (CNC) network was constructed from re-annotated Affymetrix Mouse Genome Array data. Probable functions for altogether 340 lncRNAs were predicted based on topological or other network characteristics, such as module sharing, association with network hubs and combinations of co-expression and genomic adjacency. The functions annotated to the lncRNAs mainly involve organ or tissue development (e.g. neuron, eye and muscle development), cellular transport (e.g. neuronal transport and sodium ion, acid or lipid transport) or metabolic processes (e.g. involving macromolecules, phosphocreatine and tyrosine)

    Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration

    Get PDF
    Periodontal tissue regeneration is the ultimate goal of the treatment for periodontitis-affected teeth. The success of regenerative modalities relies heavily on the utilization of appropriate biomaterials with specific properties. Poly (lactic-co-glycolic acid) (PLGA), a synthetic aliphatic polyester, has been actively investigated for periodontal therapy due to its favorable mechanical properties, tunable degradation rates, and high biocompatibility. Despite the attractive characteristics, certain constraints associated with PLGA, in terms of its hydrophobicity and limited bioactivity, have led to the introduction of modification strategies that aimed to improve the biological performance of the polymer. Here, we summarize the features of the polymer and update views on progress of its applications as barrier membranes, bone grafts, and drug delivery carriers, which indicate that PLGA can be a good candidate material in the field of periodontal regenerative medicine

    Stress-dependent design and optimization methodology of gradient porous implant and application in femoral stem

    No full text
    Gradient porous structure made by additive manufacturing (AM) technology is potential to improve the long-term stability of orthopaedic implants through bone ingrowth while maintaining mechanical safety. In this study, a parametrical optimization methodology for the customized gradient porous implants was developed based on a stress-dependent design algorithm. Clinical requirements and manufacturing capabilities of AM were considered in the design procedure. A femoral stem with a minimum bone loss proportion of 2.4% by optimizing the control parameters. This study provided a feasible and flexible design approach for the customized implant with gradient porous structure or material components
    corecore