239 research outputs found

    Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals

    Get PDF
    AIMS/HYPOTHESIS: We conducted genome-wide association studies (GWASs) and expression quantitative trait loci (eQTL) analyses to identify and characterise risk loci for type 2 diabetes in Mexican-Americans from Starr County, TX, USA. METHOD: Using 1.8 million directly interrogated and imputed genotypes in 837 unrelated type 2 diabetes cases and 436 normoglycaemic controls, we conducted Armitage trend tests. To improve power in this population with high disease rates, we also performed ordinal regression including an intermediate class with impaired fasting glucose and/or glucose tolerance. These analyses were followed by meta-analysis with a study of 967 type 2 diabetes cases and 343 normoglycaemic controls from Mexico City, Mexico. RESULT: The top signals (unadjusted p value <1×10(−5)) included 49 single nucleotide polymorphisms (SNPs) in eight gene regions (PER3, PARD3B, EPHA4, TOMM7, PTPRD, HNT [also known as RREB1], LOC729993 and IL34) and six intergenic regions. Among these was a missense polymorphism (rs10462020; Gly639Val) in the clock gene PER3, a system recently implicated in diabetes. We also report a second signal (minimum p value 1.52× 10(−6)) within PTPRD, independent of the previously implicated SNP, in a population of Han Chinese. Top meta-analysis signals included known regions HNF1A and KCNQ1. Annotation of top association signals in both studies revealed a marked excess of trans-acting eQTL in both adipose and muscle tissues. CONCLUSIONS/INTERPRETATION: In the largest study of type 2 diabetes in Mexican populations to date, we identified modest associations of novel and previously reported SNPs. In addition, in our top signals we report significant excess of SNPs that predict transcript levels in muscle and adipose tissues

    Association between Variants of the Leptin Receptor Gene (LEPR) and Overweight: A Systematic Review and an Analysis of the CoLaus Study

    Get PDF
    BACKGROUND: Three non-synonymous single nucleotide polymorphisms (Q223R, K109R and K656N) of the leptin receptor gene (LEPR) have been tested for association with obesity-related outcomes in multiple studies, showing inconclusive results. We performed a systematic review and meta-analysis on the association of the three LEPR variants with BMI. In addition, we analysed 15 SNPs within the LEPR gene in the CoLaus study, assessing the interaction of the variants with sex. METHODOLOGY/PRINCIPAL FINDINGS: We searched electronic databases, including population-based studies that investigated the association between LEPR variants Q223R, K109R and K656N and obesity- related phenotypes in healthy, unrelated subjects. We furthermore performed meta-analyses of the genotype and allele frequencies in case-control studies. Results were stratified by SNP and by potential effect modifiers. CoLaus data were analysed by logistic and linear regressions and tested for interaction with sex. The meta-analysis of published data did not show an overall association between any of the tested LEPR variants and overweight. However, the choice of a BMI cut-off value to distinguish cases from controls was crucial to explain heterogeneity in Q223R. Differences in allele frequencies across ethnic groups are compatible with natural selection of derived alleles in Q223R and K109R and of the ancient allele in K656N in Asians. In CoLaus, the rs10128072, rs3790438 and rs3790437 variants showed interaction with sex for their association with overweight, waist circumference and fat mass in linear regressions. CONCLUSIONS: Our systematic review and analysis of primary data from the CoLaus study did not show an overall association between LEPR SNPs and overweight. Most studies were underpowered to detect small effect sizes. A potential effect modification by sex, population stratification, as well as the role of natural selection should be addressed in future genetic association studies

    Suggestion for linkage of chromosome 1p35.2 and 3q28 to plasma adiponectin concentrations in the GOLDN Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adiponectin is inversely associated with obesity, insulin resistance, and atherosclerosis, but little is known about the genetic pathways that regulate the plasma level of this protein. To find novel genes that influence circulating levels of adiponectin, a genome-wide linkage scan was performed on plasma adiponectin concentrations before and after 3 weeks of treatment with fenofibrate (160 mg daily) in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. We studied Caucasian individuals (n = 1121) from 190 families in Utah and Minnesota. Of these, 859 individuals from 175 families had both baseline and post-fenofibrate treatment measurements for adiponectin. Plasma adiponectin concentrations were measured with an ELISA assay. All participants were typed for microsatellite markers included in the Marshfield Mammalian Genotyping Service marker set 12, which includes 407 markers spaced at approximately 10 cM regions across the genome. Variance components analysis was used to estimate heritability and to perform genome-wide scans. Adiponectin was adjusted for age, sex, and field center. Additional models also included BMI adjustment.</p> <p>Results</p> <p>Baseline and post-fenofibrate adiponectin measurements were highly correlated (r = 0.95). Suggestive (LOD > 2) peaks were found on chromosomes 1p35.2 and 3q28 (near the location of the adiponectin gene).</p> <p>Conclusion</p> <p>Two candidate genes, <it>IL22RA1 </it>and <it>IL28RA</it>, lie under the chromosome 1 peak; further analyses are needed to identify the specific genetic variants in this region that influence circulating adiponectin concentrations.</p

    Blood Levels of Macrophage Migration Inhibitory Factor after Successful Resuscitation from Cardiac Arrest

    Get PDF
    Introduction: Ischemia-reperfusion injury following cardiopulmonary resuscitation (CPR) is associated with a systemic inflammatory response, resulting in post-resuscitation disease. In the present study we investigated the response of the pleiotropic inflammatory cytokine macrophage migration inhibitory factor (MIF) to CPR in patients admitted to the hospital after out-of-hospital cardiac arrest (OHCA). To describe the magnitude of MIF release, we compared the blood levels from CPR patients with those obtained in healthy volunteers and with an aged- and gender-matched group of patient

    Ashkenazi Jewish Centenarians Do Not Demonstrate Enrichment in Mitochondrial Haplogroup J

    Get PDF
    BACKGROUND: Association of mitochondrial haplogroup J with longevity has been reported in several population subgroups. While studies from northern Italy and Finland, have described a higher frequency of haplogroup J among centenarians in comparison to non-centenarian, several other studies could not replicate these results and suggested various explanations for the discrepancy. METHODOLOGY/PRINCIPAL FINDINGS: We have evaluated haplogroup frequencies among Ashkenazi Jewish centenarians using two different sets of matched controls. No difference was observed in the haplogroup J frequencies between the centenarians or either matched control group, despite adequate statistical power to detect such a difference. Furthermore, the lack of association was robust to population substructure in the Ashkenazi Jewish population. Given this discrepancy with the previous reported associations in the northern Italian and the Finnish populations, we conducted re-analysis of these previously published data, which supported one of several possible explanations: i) inadequate matching of cases and controls; ii) inadequate adjustment for multiple comparison testing; iii) cryptic population stratification. CONCLUSIONS/SIGNIFICANCE: There does not exist a universal association of mitochondrial haplogroup J with longevity across all population groups. Reported associations in specialized populations may reflect genetic or other interactions specific to those populations or else cryptic confounding influences, such as inadequate matching attributable to population substructure, which are of general relevance to all studies of the possible association of mitochondrial DNA haplogroups with common complex phenotypes

    Meta‐Analysis of Genome‐wide Linkage Studies in BMI and Obesity

    Full text link
    Objective: The objective was to provide an overall assessment of genetic linkage data of BMI and BMI‐defined obesity using a nonparametric genome scan meta‐analysis. Research Methods and Procedures: We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome‐wide logarithm of the odds (LOD) scores, non‐parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI‐defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. Results: Bins at chromosome 13q13.2‐ q33.1, 12q23‐q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3‐22.3 were also observed for BMI‐defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1‐qter and 12p11.21‐q23 (p < 0.01). Conclusion: Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93663/1/oby.2007.269.pd

    A second generation human haplotype map of over 3.1 million SNPs

    Full text link
    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r(2) of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r(2) of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62863/1/nature06258.pd
    corecore