77 research outputs found

    An experimental study of tomographic imaging in layered media

    Get PDF
    Ultrasonic tomography has found its applications in material evaluation since the later 70’s. However, the techniques in this field are far less developed compared to their x-ray counterparts, which have been widely used in the medical community. One of the practical problems in acoustic tomography is that acoustic waves will not necessarily propagate along straight paths in a nonhomogeneous medium. The situation will be more complicated when material inhomogeneities are coupled with anisotropy as the approach is applied to composite media. In order to resolve the situation, one has either to tolerate the consequence of using straight line ray paths or to seek a way to correct the errors due to ray bending. Indeed, most of the previous work in this area has been based on the straight path assumption. As pointed out by Dines and Lytle[1], if the material inhomogeneity is not serious, the errors caused by straight path assumption can be safely neglected. However, in practice, situations may arise where serious inhomogeneities exist. Even with small inhomogeneities correction is highly desirable when accuracy is of particular concern

    Cu-63 NQR Measurement of Stripe Order Parameter in La(2-x)Sr(x)CuO(4)

    Full text link
    We demonstrate that one can measure the charge-stripe order parameter in the hole-doped CuO(2) planes of La(1.875)Ba(0.125)CuO(4), La(1.48)Nd(0.4)Sr(0.12)CuO(4) and La(1.68)Eu(0.2)Sr(0.12)CuO(4) utilizing the wipeout effects of Cu-63 NQR. Application of the same approach to La(2-x)Sr(x)CuO(4) reveals the presence of similar stripe order for the entire underdoped superconducting regime 1/16 < x < 1/8.Comment: 4 pages in RevTex, 3 figures in postscript. Minor changes have been made to increase readability. This manuscript has been accepted for publication in Physical Review Letter

    Adaptations to Endosymbiosis in a Cnidarian-Dinoflagellate Association: Differential Gene Expression and Specific Gene Duplications

    Get PDF
    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K–dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the symbiotic state and in the gastroderm. Our results thus offer new insight into the inter-partner signaling required for the physiological mechanisms of the symbiosis that is crucial for coral health

    DEFORMATION and RUPTURE of the OCEANIC CRUST MAY CONTROL GROWTH of HAWAIIAN VOLCANOES

    Get PDF
    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot- spot activity below the Pacific Plate(1,2). Despite the apparent simplicity of the parent process emission of magma onto the oceanic crust - the resulting edifices display some topographic complexity(3-5). Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown(6,7). Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/ oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities(8-10). Further studies are needed to determine whether such processes occur in other active intraplate volcanoes

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF
    • …
    corecore