7,764 research outputs found
Reply to "Comment on 'Fano resonance for Anderson Impurity Systems' "
In a recent Comment, Kolf et al. (cond-mat/0503669) state that our analysis
of the Fano resonance for Anderson impurity systems [Luo et al., Phys. Rev.
Lett 92, 256602 (2004)] is incorrect. Here we want to point out that their
comments are not based on firm physical results and their criticisms are
unjustified and invalid.Comment: 1 page, 1 figure, to appear in PR
Compensation of compliance errors in parallel manipulators composed of non-perfect kinematic chains
The paper is devoted to the compliance errors compensation for parallel
manipulators under external loading. Proposed approach is based on the
non-linear stiffness modeling and reduces to a proper adjusting of a target
trajectory. In contrast to previous works, in addition to compliance errors
caused by machining forces, the problem of assembling errors caused by
inaccuracy in the kinematic chains is considered. The advantages and practical
significance of the proposed approach are illustrated by examples that deal
with groove milling with Orthoglide manipulator.Comment: Advances in Robot Kinematics, France (2012
Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates
Physical effects of bilayer coupling on the tunneling spectroscopy of high
T cuprates are investigated. The bilayer coupling separates the bonding
and antibonding bands and leads to a splitting of the coherence peaks in the
tunneling differential conductance. However, the coherence peak of the bonding
band is strongly suppressed and broadened by the particle-hole asymmetry in the
density of states and finite quasiparticle life-time, and is difficult to
resolve by experiments. This gives a qualitative account why the bilayer
splitting of the coherence peaks was not clearly observed in tunneling
measurements of double-layer high-T oxides.Comment: 4 pages, 3 figures, to be published in PR
Atomic-scale images of charge ordering in a mixed-valence manganite
Transition-metal perovskite oxides exhibit a wide range of extraordinary but
imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of
freedom all undergo order-disorder transitions in regimes not far from where
the best-known of these phenomena, namely high-temperature superconductivity of
the copper oxides, and the 'colossal' magnetoresistance of the manganese
oxides, occur. Mostly diffraction techniques, sensitive either to the spin or
the ionic core, have been used to measure the order. Unfortunately, because
they are only weakly sensitive to valence electrons and yield superposition of
signals from distinct mesoscopic phases, they cannot directly image mesoscopic
phase coexistence and charge ordering, two key features of the manganites. Here
we describe the first experiment to image charge ordering and phase separation
in real space with atomic-scale resolution in a transition metal oxide. Our
scanning tunneling microscopy (STM) data show that charge order is correlated
with structural order, as well as with whether the material is locally metallic
or insulating, thus giving an atomic-scale basis for descriptions of the
manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference
Tensor Operators for Uh(sl(2))
Tensor operators for the Jordanian quantum algebra Uh(sl(2)) are considered.
Some explicit examples of them, which are obtained in the boson or fermion
realization, are given and their properties are studied. It is also shown that
the Wigner-Eckart's theorem can be extended to Uh(sl(2)).Comment: 11pages, LaTeX, to be published in J. Phys.
Continuous variable quantum key distribution with two-mode squeezed states
Quantum key distribution (QKD) enables two remote parties to grow a shared
key which they can use for unconditionally secure communication [1]. The
applicable distance of a QKD protocol depends on the loss and the excess noise
of the connecting quantum channel [2-10]. Several QKD schemes based on coherent
states and continuous variable (CV) measurements are resilient to high loss in
the channel, but strongly affected by small amounts of channel excess noise
[2-6]. Here we propose and experimentally address a CV QKD protocol which uses
fragile squeezed states combined with a large coherent modulation to greatly
enhance the robustness to channel noise. As a proof of principle we
experimentally demonstrate that the resulting QKD protocol can tolerate more
noise than the benchmark set by the ideal CV coherent state protocol. Our
scheme represents a very promising avenue for extending the distance for which
secure communication is possible.Comment: 8 pages, 5 figure
Absence of the zero bias peak in vortex tunneling spectra of high temperature superconductors?
The c-axis tunneling matrix of high-Tc superconductors is shown to depend
strongly on the in-plane momentum of electrons and vanish along the four nodal
lines of the d(x^2-y^2)-wave energy gap. This anisotropic tunneling matrix
suppresses completely the contribution of the most extended quasiparticles in
the vortex core to the c-axis tunneling current and leads to a spectrum similar
to that of a nodeless superconductor. Our results give a natural explanation of
the absence of the zero bias peak as well as other features observed in the
vortex tunneling spectra of high-Tc cuprates.Comment: 4 pages 3 figures, minor corrections, to appear in Phys Rev
A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications
Double- and triple-walled carbon nanotubes (DWNTs and TWNTs) consist of coaxially-nested two and three single-walled carbon nanotubes (SWNTs). They act as the geometrical bridge between SWNTs and multi-walled carbon nanotubes (MWNTs), providing an ideal model for studying the coupling interactions between different shells in MWNTs. Within this context, this article comprehensively reviews various synthetic routes of DWNTs’ and TWNTs’ production, such as arc discharge, catalytic chemical vapor deposition and thermal annealing of pea pods (i.e., SWNTs encapsulating fullerenes). Their structural features, as well as promising applications and future perspectives are also discussed. Keywords: carbon nanotubes; double-walled carbon nanotubes; triple-walled carbon nanotubes; synthesis; catalytic chemical vapor deposition; arc discharge; fullerenes; pea pod
Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions
We study the current noise spectra of a tunnel junction of a metal with
strong pairing phase fluctuation and a superconductor. It is shown that there
is a characteristic peak in the noise spectrum at the intrinsic Josephson
frequency when is smaller than the pairing gap but
larger than the pairing scattering rate. In the presence of an AC voltage, the
tunnelling current noise shows a series of characteristic peaks with increasing
DC voltage. Experimental observation of these peaks will give direct evidence
of the pair fluctuation in the normal state of high- superconductors and
from the half width of the peaks the pair decay rate can be estimated.Comment: 4 pages, 3 figure
- …
