7,764 research outputs found

    Reply to "Comment on 'Fano resonance for Anderson Impurity Systems' "

    Full text link
    In a recent Comment, Kolf et al. (cond-mat/0503669) state that our analysis of the Fano resonance for Anderson impurity systems [Luo et al., Phys. Rev. Lett 92, 256602 (2004)] is incorrect. Here we want to point out that their comments are not based on firm physical results and their criticisms are unjustified and invalid.Comment: 1 page, 1 figure, to appear in PR

    Compensation of compliance errors in parallel manipulators composed of non-perfect kinematic chains

    Get PDF
    The paper is devoted to the compliance errors compensation for parallel manipulators under external loading. Proposed approach is based on the non-linear stiffness modeling and reduces to a proper adjusting of a target trajectory. In contrast to previous works, in addition to compliance errors caused by machining forces, the problem of assembling errors caused by inaccuracy in the kinematic chains is considered. The advantages and practical significance of the proposed approach are illustrated by examples that deal with groove milling with Orthoglide manipulator.Comment: Advances in Robot Kinematics, France (2012

    Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates

    Full text link
    Physical effects of bilayer coupling on the tunneling spectroscopy of high Tc_{c} cuprates are investigated. The bilayer coupling separates the bonding and antibonding bands and leads to a splitting of the coherence peaks in the tunneling differential conductance. However, the coherence peak of the bonding band is strongly suppressed and broadened by the particle-hole asymmetry in the density of states and finite quasiparticle life-time, and is difficult to resolve by experiments. This gives a qualitative account why the bilayer splitting of the coherence peaks was not clearly observed in tunneling measurements of double-layer high-Tc_c oxides.Comment: 4 pages, 3 figures, to be published in PR

    Atomic-scale images of charge ordering in a mixed-valence manganite

    Get PDF
    Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the 'colossal' magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference

    Tensor Operators for Uh(sl(2))

    Full text link
    Tensor operators for the Jordanian quantum algebra Uh(sl(2)) are considered. Some explicit examples of them, which are obtained in the boson or fermion realization, are given and their properties are studied. It is also shown that the Wigner-Eckart's theorem can be extended to Uh(sl(2)).Comment: 11pages, LaTeX, to be published in J. Phys.

    Continuous variable quantum key distribution with two-mode squeezed states

    Full text link
    Quantum key distribution (QKD) enables two remote parties to grow a shared key which they can use for unconditionally secure communication [1]. The applicable distance of a QKD protocol depends on the loss and the excess noise of the connecting quantum channel [2-10]. Several QKD schemes based on coherent states and continuous variable (CV) measurements are resilient to high loss in the channel, but strongly affected by small amounts of channel excess noise [2-6]. Here we propose and experimentally address a CV QKD protocol which uses fragile squeezed states combined with a large coherent modulation to greatly enhance the robustness to channel noise. As a proof of principle we experimentally demonstrate that the resulting QKD protocol can tolerate more noise than the benchmark set by the ideal CV coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.Comment: 8 pages, 5 figure

    Absence of the zero bias peak in vortex tunneling spectra of high temperature superconductors?

    Full text link
    The c-axis tunneling matrix of high-Tc superconductors is shown to depend strongly on the in-plane momentum of electrons and vanish along the four nodal lines of the d(x^2-y^2)-wave energy gap. This anisotropic tunneling matrix suppresses completely the contribution of the most extended quasiparticles in the vortex core to the c-axis tunneling current and leads to a spectrum similar to that of a nodeless superconductor. Our results give a natural explanation of the absence of the zero bias peak as well as other features observed in the vortex tunneling spectra of high-Tc cuprates.Comment: 4 pages 3 figures, minor corrections, to appear in Phys Rev

    A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications

    Get PDF
    Double- and triple-walled carbon nanotubes (DWNTs and TWNTs) consist of coaxially-nested two and three single-walled carbon nanotubes (SWNTs). They act as the geometrical bridge between SWNTs and multi-walled carbon nanotubes (MWNTs), providing an ideal model for studying the coupling interactions between different shells in MWNTs. Within this context, this article comprehensively reviews various synthetic routes of DWNTs’ and TWNTs’ production, such as arc discharge, catalytic chemical vapor deposition and thermal annealing of pea pods (i.e., SWNTs encapsulating fullerenes). Their structural features, as well as promising applications and future perspectives are also discussed. Keywords: carbon nanotubes; double-walled carbon nanotubes; triple-walled carbon nanotubes; synthesis; catalytic chemical vapor deposition; arc discharge; fullerenes; pea pod

    Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions

    Full text link
    We study the current noise spectra of a tunnel junction of a metal with strong pairing phase fluctuation and a superconductor. It is shown that there is a characteristic peak in the noise spectrum at the intrinsic Josephson frequency ωJ=2eV\omega_J=2eV when ωJ\omega_J is smaller than the pairing gap but larger than the pairing scattering rate. In the presence of an AC voltage, the tunnelling current noise shows a series of characteristic peaks with increasing DC voltage. Experimental observation of these peaks will give direct evidence of the pair fluctuation in the normal state of high-TcT_c superconductors and from the half width of the peaks the pair decay rate can be estimated.Comment: 4 pages, 3 figure
    corecore