4,745 research outputs found
Entanglement in nuclear quadrupole resonance
Entangled quantum states are an important element of quantum information
techniques. We determine the requirements for states of quadrupolar nuclei with
spins >1/2 to be entangled. It was shown that entanglement is achieved at low
temperature by applying a magnetic field to a quadrupolar nuclei possess
quadrupole moments, which interacts with the electricfield gradient produced by
the charge distribution in their surroundings.Comment: 9 pages, 5 figure
Control of spin in quantum dots with non-Fermi liquid correlations
Spin effects in the transport properties of a quantum dot with spin-charge
separation are investigated. It is found that the non-linear transport spectra
are dominated by spin dynamics. Strong spin polarization effects are observed
in a magnetic field. They can be controlled by varying gate and bias voltages.
Complete polarization is stable against interactions. When polarization is not
complete, it is power-law enhanced by non-Fermi liquid effects.Comment: 4 pages, 4 figure
Scaling of Entanglement close to a Quantum Phase Transitions
In this Letter we discuss the entanglement near a quantum phase transition by
analyzing the properties of the concurrence for a class of exactly solvable
models in one dimension. We find that entanglement can be classified in the
framework of scaling theory. Further, we reveal a profound difference between
classical correlations and the non-local quantum correlation, entanglement: the
correlation length diverges at the phase transition, whereas entanglement in
general remains short ranged.Comment: 4 pages, 4 figures, revtex. Stylistic changes and format modifie
Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control
Background:
Genetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009.
Methods:
The sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes.
Results:
Most participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was preferred; however a transgenic release that satisfied certain requirements was usually acceptable.
Conclusions:
Although there were some dissenters, the majority of participants were pragmatic towards a release of GM mosquitoes. An array of social and cultural issues associated with malaria, mosquitoes and genetic engineering became apparent. If these can be successfully addressed, then social acceptance among the populations surveyed seems promising
Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex
Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.ope
Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts
Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development
Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system
Adjunctive mood stabilizer treatment for hospitalized schizophrenia patients: Asia psychotropic prescripton study (2001-2008)
Recent studies indicate relatively high international rates of adjunctive psychotropic medication, including mood stabilizers, for patients with schizophrenia. Since such treatments are little studied in Asia, we examined the frequency of mood-stabilizer use and its clinical correlates among hospitalized Asian patients diagnosed with schizophrenia in 2001-2008. We evaluated usage rates of mood stabilizers with antipsychotic drugs, and associated factors, for in-patients diagnosed with DSM-IV schizophrenia in 2001, 2004 and 2008 in nine Asian regions: China, Hong Kong, India, Korea, Japan, Malaysia, Taiwan, Thailand, and Singapore. Overall, mood stabilizers were given to 20.4% (n=1377/6761) of hospitalized schizophrenia patients, with increased usage over time. Mood-stabilizer use was significantly and independently associated in multivariate logistic modeling with: aggressive behaviour, disorganized speech, year sampled (2008 vs. earlier), multiple hospitalizations, less negative symptoms, younger age, with regional variation (Japan, Hong Kong, Singapore>Taiwan or China). Co-prescription of adjunctive mood stabilizers with antipsychotics for hospitalized Asian schizophrenia patients increased over the past decade, and was associated with specific clinical characteristics. This practice parallels findings in other countries and illustrates ongoing tension between evidence-based practice vs. individualized, empirical treatment of psychotic disorders.published_or_final_versio
In vitro suppression of the MMP-3 gene in normal and cytokine-treated human chondrosarcoma using small interfering RNA
<p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinase (MMPs) synthesized and secreted from connective tissue cells have been thought to participate in degradation of the extracellular matrix. Increased MMPs activities that degrade proteoglycans have been measured in osteoarthritis cartilage. This study aims to suppress the expression of the <it>MMP-3 </it>gene in <it>in vitro </it>human chondrosarcoma using siRNA.</p> <p>Methods</p> <p>Cells were categorized into four groups: control (G.1); transfection solution treated (G.2); negative control siRNA treated (G.3); and <it>MMP-3 </it>siRNA treated (G.4). All four groups were further subdivided into two groups - treated and non-treated with IL-1β- following culture for 48 and 72 h. We observed the effects of gene suppression according to cell morphology, glycosaminoglycan (GAG) and hyaluronan (HA) production, and gene expression by using real-time polymerase chain reaction (PCR).</p> <p>Results</p> <p>In IL-1β treated cells the apoptosis rate in G.4 was found to be lower than in all other groups, while viability and mitotic rate were higher than in all other groups (<it>p </it>< 0.05). The production of GAG and HA in G.4 was significantly higher than the control group (<it>p </it>< 0.05). <it>MMP-3 </it>gene expression was downregulated significantly (<it>p </it>< 0.05).</p> <p>Conclusion</p> <p><it>MMP-3 </it>specific siRNA can inhibit the expression of <it>MMP-3 </it>in chondrosarcoma. This suggests that <it>MMP-3 </it>siRNA has the potential to be a useful preventive and therapeutic agent for osteoarthritis.</p
- …