126 research outputs found

    Improvements in readiness to change and drinking in primary care patients with unhealthy alcohol use: a prospective study

    Get PDF
    BACKGROUND. The course of alcohol consumption and cognitive dimensions of behavior change (readiness to change, importance of changing and confidence in ability to change) in primary care patients are not well described. The objective of the study was to determine changes in readiness, importance and confidence after a primary care visit, and 6-month improvements in both drinking and cognitive dimensions of behavior change, in patients with unhealthy alcohol use. METHODS. Prospective cohort study of patients with unhealthy alcohol use visiting primary care physicians, with repeated assessments of readiness, importance, and confidence (visual analogue scale (VAS), score range 1–10 points). Improvements 6 months later were defined as no unhealthy alcohol use or any increase in readiness, importance, or confidence. Regression models accounted for clustering by physician and adjusted for demographics, alcohol consumption and related problems, and discussion with the physician about alcohol. RESULTS. From before to immediately after the primary care physician visit, patients (n = 173) had increases in readiness (mean +1.0 point), importance (+0.2), and confidence (+0.5) (all p < 0.002). In adjusted models, discussion with the physician about alcohol was associated with increased readiness (+0.8, p = 0.04). At 6 months, many participants had improvements in drinking or readiness (62%), drinking or importance (58%), or drinking or confidence (56%). CONCLUSION. Readiness, importance and confidence improve in many patients with unhealthy alcohol use immediately after a primary care visit. Six months after a visit, most patients have improvements in either drinking or these cognitive dimensions of behavior change.Swiss National Science Foundation; Fondation Suisse de Recherche sur I'Alcool; Robert Wood Johnson Foundation (Generalist Faculty Physician Scholar Award

    Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    Get PDF
    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones

    Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites

    Get PDF
    Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe
    corecore