81 research outputs found

    Glutathione pathway gene variation and risk of autism spectrum disorders

    Get PDF
    Despite evidence that autism is highly heritable with estimates of 15 or more genes involved, few studies have directly examined associations of multiple gene interactions. Since inability to effectively combat oxidative stress has been suggested as a mechanism of autism, we examined genetic variation 42 genes (308 single-nucleotide polymorphisms (SNPs)) related to glutathione, the most important antioxidant in the brain, for both marginal association and multi-gene interaction among 318 case–parent trios from The Autism Genetic Resource Exchange. Models of multi-SNP interactions were estimated using the trio Logic Regression method. A three-SNP joint effect was observed for genotype combinations of SNPs in glutaredoxin, glutaredoxin 3 (GLRX3), and cystathione gamma lyase (CTH); OR = 3.78, 95% CI: 2.36, 6.04. Marginal associations were observed for four genes including two involved in the three-way interaction: CTH, alcohol dehydrogenase 5, gamma-glutamylcysteine synthetase, catalytic subunit and GLRX3. These results suggest that variation in genes involved in counterbalancing oxidative stress may contribute to autism, though replication is necessary

    Protective effects of a compound herbal extract (Tong Xin Luo) on free fatty acid induced endothelial injury: Implications of antioxidant system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tong-Xin-Luo (TXL) – a mixture of herbal extracts, has been used in Chinese medicine with established therapeutic efficacy in patients with coronary artery disease.</p> <p>Methods</p> <p>We investigated the protective role of TXL extracts on endothelial cells injured by a known risk factor – palmitic acid (PA), which is elevated in metabolic syndrome and associated with cardiovascular complications. Human aortic endothelial cells (HAECs) were preconditioned with TXL extracts before exposed to PA for 24 hours.</p> <p>Results</p> <p>We found that PA (0.5 mM) exposure induced 73% apoptosis in endothelial cells. However, when HAECs were preconditioned with ethanol extracted TXL (100 μg/ml), PA induced only 7% of the endothelial cells into apoptosis. Using antibody-based protein microarray, we found that TXL attenuated PA-induced activation of p38-MAPK stress pathway. To investigate the mechanisms involved in TXL's protective effects, we found that TXL reduced PA-induced intracellular oxidative stress. Through AMPK pathway, TXL restored the intracellular antioxidant system, which was depressed by the PA treatment, with an increased expression of thioredoxin and a decreased expression of the thioredoxin interacting protein.</p> <p>Conclusion</p> <p>In summary, our study demonstrates that TXL protects endothelial cells from PA-induced injury. This protection is likely mediated by boosting intracellular antioxidant capacity through AMPK pathway, which may account for the therapeutic efficacy in TXL-mediated cardiovascular protection.</p

    Hypoxia Reduces Arylsulfatase B Activity and Silencing Arylsulfatase B Replicates and Mediates the Effects of Hypoxia

    Get PDF
    This report presents evidence of 1) a role for arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) in mediating intracellular oxygen signaling; 2) replication between the effects of ARSB silencing and hypoxia on sulfated glycosaminoglycan content, cellular redox status, and expression of hypoxia-associated genes; and 3) a mechanism whereby changes in chondroitin-4-sulfation that follow either hypoxia or ARSB silencing can induce transcriptional changes through galectin-3. ARSB removes 4-sulfate groups from the non-reducing end of chondroitin-4-sulfate and dermatan sulfate and is required for their degradation. For activity, ARSB requires modification of a critical cysteine residue by the formylglycine generating enzyme and by molecular oxygen. When primary human bronchial and human colonic epithelial cells were exposed to 10% O2×1 h, ARSB activity declined by ∼41% and ∼30% from baseline, as nuclear hypoxia inducible factor (HIF)-1α increased by ∼53% and ∼37%. When ARSB was silenced, nuclear HIF-1α increased by ∼81% and ∼61% from baseline, and mRNA expression increased to 3.73 (±0.34) times baseline. Inversely, ARSB overexpression reduced nuclear HIF-1α by ∼37% and ∼54% from baseline in the epithelial cells. Hypoxia, like ARSB silencing, significantly increased the total cellular sulfated glycosaminoglycans and chondroitin-4-sulfate (C4S) content. Both hypoxia and ARSB silencing had similar effects on the cellular redox status and on mRNA expression of hypoxia-associated genes. Transcriptional effects of both ARSB silencing and hypoxia may be mediated by reduction in galectin-3 binding to more highly sulfated C4S, since the galectin-3 that co-immunoprecipitated with C4S declined and the nuclear galectin-3 increased following ARSB knockdown and hypoxia

    Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xenobiotics are neurotoxins that dramatically alter the health of the child. In addition, an inefficient detoxification system leads to oxidative stress, gut dysbiosis, and immune dysfunction. The consensus among physicians who treat autism with a biomedical approach is that those on the spectrum are burdened with oxidative stress and immune problems. In a trial to understand the role of detoxification in the etiology of autism, selected parameters related to sulfur-dependent detoxification mechanisms in plasma of autistic children from Saudi Arabia will be investigated compared to control subjects.</p> <p>Methods</p> <p>20 males autistic children aged 3-15 years and 20 age and gender matching healthy children as control group were included in this study. Levels of reduced glutathione (GSH), total (GSH+GSSG), glutathione status (GSH/GSSG), glutathione reductase (GR), glutathione- s-transferase (GST), thioredoxin (Trx), thioredoxin reductase (TrxR) and peroxidoxins (Prxs I and III) were determined.</p> <p>Results</p> <p>Reduced glutathione, total glutathione, GSH/GSSG and activity levels of GST were significantly lower, GR shows non-significant differences, while, Trx, TrxR and both Prx I and III recorded a remarkably higher values in autistics compared to control subjects.</p> <p>Conclusion</p> <p>The impaired glutathione status together with the elevated Trx and TrxR and the remarkable over expression of both Prx I and Prx III, could be used as diagnostic biomarkers of autism.</p

    The potential role of thioredoxin 1 and CD30 systems as multiple pathway targets and biomarkers in tumor therapy

    Get PDF
    Our progress in understanding pathological disease mechanisms has led to the identification of biomarkers that have had a considerable impact on clinical practice. It is hoped that the move from generalized to stratified approaches, with the grouping of patients into clinical/therapeutic subgroups according to specific biomarkers, will lead to increasingly more effective clinical treatments in the near future. This success depends on the identification of biomarkers that reflect disease evolution and can be used to predict disease state and therapy response, or represent themselves a target for treatment. Biomarkers can be identified by studying relationships between serum, tissue, or tumor microenvironment parameters and clinical or therapeutic parameters at onset and during the progression of the disease, using systems biology. Given that multiple pathways, such as those responsible for redox and immune regulation, are deregulated or altered in tumors, the future of tumor therapy could lie in the simultaneous targeting of these pathways using extracellular and intracellular targets and biomarkers. With this aim in mind, we evaluated the role of thioredoxin 1, a key redox regulator, and CD30, a cell membrane receptor, in immune regulation. Our results lead us to suggest that the combined use of these biomarkers provides more detailed information concerning the multiple pathways affected in disease and hence the possibility of more effective treatment

    Healthy ageing and depletion of intracellular glutathione influences T cell membrane thioredoxin-1 levels and cytokine secretion

    Get PDF
    Background: During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Intracellular thiols are maintained in their reduced state by a network of redox regulating peptides, proteins and enzymes such as glutathione, thioredoxins and thioredoxin reductase. Here we have investigated whether any relationship exists between age and secreted or cell surface thioredoxin-1, intracellular glutathione concentration and T cell surface thioredoxin 1 (Trx-1) and how this is related to interleukin (IL)-2 production.Results: Healthy older adults have reduced lymphocyte surface expression and lower circulating plasma Trx-1 concentrations. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show that cell surface Trx-1 is lowered, secretion of Trx-1 is decreased and the response to the lectin phytohaemagglutinin measured as IL-2 production is also affected. These effects are recapitulated by another glutathione depleting agent, diethylmaleate.Conclusion: Together these data suggest that a relationship exists between the intracellular redox compartment and Trx-1 proteins. Loss of lymphocyte surface Trx-1 may be a useful biomarker of healthy ageing. © 2013 Carilho Torrao et al.; licensee Chemistry Central Ltd

    Impaired Nuclear Nrf2 Translocation Undermines the Oxidative Stress Response in Friedreich Ataxia

    Get PDF
    BACKGROUND: Friedreich ataxia originates from a decrease in mitochondrial frataxin, which causes the death of a subset of neurons. The biochemical hallmarks of the disease include low activity of the iron sulfur cluster-containing proteins (ISP) and impairment of antioxidant defense mechanisms that may play a major role in disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We thus investigated signaling pathways involved in antioxidant defense mechanisms. We showed that cultured fibroblasts from patients with Friedreich ataxia exhibited hypersensitivity to oxidative insults because of an impairment in the Nrf2 signaling pathway, which led to faulty induction of antioxidant enzymes. This impairment originated from previously reported actin remodeling by hydrogen peroxide. CONCLUSIONS/SIGNIFICANCE: Thus, the defective machinery for ISP synthesis by causing mitochondrial iron dysmetabolism increases hydrogen peroxide production that accounts for the increased susceptibility to oxidative stress

    The Role of Thioredoxin Reductases in Brain Development

    Get PDF
    The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS)-specific deletion of cytosolic (Txnrd1) and mitochondrial (Txnrd2) thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL) was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells

    The logic of kinetic regulation in the thioredoxin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system.</p> <p>Results</p> <p>Analysis of a realistic computational model of the <it>Escherichia coli </it>thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models.</p> <p>Conclusions</p> <p>Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.</p

    Cell Death by SecTRAPs: Thioredoxin Reductase as a Prooxidant Killer of Cells

    Get PDF
    BACKGROUND: SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins) can be formed from the selenoprotein thioredoxin reductase (TrxR) by targeting of its selenocysteine (Sec) residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function. PRINCIPAL FINDINGS: Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS) and consequently antioxidants could protect against the cell killing by SecTRAPs. CONCLUSIONS: We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity
    corecore