4,598 research outputs found

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip

    Large-eddy simulation of chemically reactive pollutant transport from a point source in urban area

    Get PDF
    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel res...published_or_final_versio

    PACF: A precision-adjustable computational framework for solving singular values

    Get PDF
    Singular value decomposition (SVD) plays a significant role in matrix analysis, and the differential quotient difference with shifts (DQDS) algorithm is an important technique for solving singular values of upper bidiagonal matrices. However, ill-conditioned matrices and large-scale matrices may cause inaccurate results or long computation times when solving singular values. At the same time, it is difficult for users to effectively find the desired solution according to their needs. In this paper, we design a precision-adjustable computational framework for solving singular values, named PACF. In our framework, the same solution algorithm contains three options: original mode, high-precision mode, and mixed-precision mode. The first algorithm is the original version of the algorithm. The second algorithm is a reliable numerical algorithm we designed using Error-free transformation (EFT) technology. The last algorithm is an efficient numerical algorithm we developed using the mixed-precision idea. Our PACF can add different solving algorithms for different types of matrices, which are universal and extensible. Users can choose different algorithms to solve singular values according to different needs. This paper implements the high-precision DQDS and mixed-precision DQDS algorithms and conducts extensive experiments on a supercomputing platform to demonstrate that our algorithm is reliable and efficient. Besides, we introduce the error analysis of the inner loop of the DQDS and HDQDS algorithms

    STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride

    Full text link
    Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic electron and hole puddles, resulting in a finite density of carriers even at the charge neutrality point. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. In this letter, we use scanning tunneling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moire patterns in the topographic images. However, contrary to recent predictions, this conformation does not lead to a sizable band gap due to the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared to those on silicon oxide. This leads to charge fluctuations which are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments than are possible on freestanding devices.Comment: Nature Materials advance online publication 13/02/201

    Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns

    Full text link
    In order to describe the slow response of a glass former we discuss some distribution of correlation times, e.g., the generalized gamma distribution (GG) and an extension thereof (GGE), the latter allowing to reproduce a simple peak susceptibility such as of Cole-Davidson type as well as a susceptibility exhibiting an additional high frequency power law contribution (excess wing). Applying the GGE distribution to the dielectric spectra of glass formers exhibiting no beta-process peak (glycerol, propylene carbonate and picoline) we are able to reproduce the salient features of the slow response (1e-6 Hz - 1e9 Hz). A line shape analysis is carried out either in the time or frequency domain and in both cases an excess wing can be identified. The latter evolves in a universal way while cooling and shows up for correlation times tau_alpha > 1e-8 s. It appears that its first emergence marks the break down of the high temperature scenario of mode coupling theory. - In order to describe a glass former exhibiting a beta-process peak we have introduced a distribution function which is compatible with assuming a thermally activated process in contrast to some commonly used fit functions. Together with the GGE distribution this function allows in the frame of the Williams-Watts approach to completely interpolate the spectra, e.g. of fluoro aniline (1e-6 Hz - 1e9 Hz). The parameters obtained indicate an emergence of both the excess wing and the beta-process again at tau_alpha > 1e-8s.Comment: 22 pages, 12 figure

    Ripple Texturing of Suspended Graphene Atomic Membranes

    Full text link
    Graphene is the nature's thinnest elastic membrane, with exceptional mechanical and electrical properties. We report the direct observation and creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene sheets, using spontaneously and thermally induced longitudinal strains on patterned substrates, with control over their orientations and wavelengths. We also provide the first measurement of graphene's thermal expansion coefficient, which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure

    Resonances in J/ψϕπ+πJ/\psi \to \phi \pi ^+\pi ^- and ϕK+K\phi K^+K^-

    Full text link
    A partial wave analysis is presented of J/ψϕπ+πJ/\psi \to \phi \pi ^+\pi ^- and ϕK+K\phi K^+K^- from a sample of 58M J/ψJ/\psi events in the BES II detector. The f0(980)f_0(980) is observed clearly in both sets of data, and parameters of the Flatt\' e formula are determined accurately: M=965±8M = 965 \pm 8 (stat) ±6\pm 6 (syst) MeV/c2^2, g1=165±10±15g_1 = 165 \pm 10 \pm 15 MeV/c2^2, g2/g1=4.21±0.25±0.21g_2/g_1 = 4.21 \pm 0.25 \pm 0.21. The ϕππ\phi \pi \pi data also exhibit a strong ππ\pi \pi peak centred at M=1335M = 1335 MeV/c2^2. It may be fitted with f2(1270)f_2(1270) and a dominant 0+0^+ signal made from f0(1370)f_0(1370) interfering with a smaller f0(1500)f_0(1500) component. There is evidence that the f0(1370)f_0(1370) signal is resonant, from interference with f2(1270)f_2(1270). There is also a state in ππ\pi \pi with M=179030+40M = 1790 ^{+40}_{-30} MeV/c2^2 and Γ=27030+60\Gamma = 270 ^{+60}_{-30} MeV/c2^2; spin 0 is preferred over spin 2. This state, f0(1790)f_0(1790), is distinct from f0(1710)f_0(1710). The ϕKKˉ\phi K\bar K data contain a strong peak due to f2(1525)f_2'(1525). A shoulder on its upper side may be fitted by interference between f0(1500)f_0(1500) and f0(1710)f_0(1710).Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.

    Measurement of the Branching Fraction of J/psi --> pi+ pi- pi0

    Full text link
    Using 58 million J/psi and 14 million psi' decays obtained by the BESII experiment, the branching fraction of J/psi --> pi+ pi- pi0 is determined. The result is (2.10+/-0.12)X10^{-2}, which is significantly higher than previous measurements.Comment: 9 pages, 8 figures, RevTex
    corecore