108 research outputs found

    Families of Canonical Transformations by Hamilton-Jacobi-Poincar\'e equation. Application to Rotational and Orbital Motion

    Full text link
    The Hamilton-Jacobi equation in the sense of Poincar\'e, i.e. formulated in the extended phase space and including regularization, is revisited building canonical transformations with the purpose of Hamiltonian reduction. We illustrate our approach dealing with orbital and attitude dynamics. Based on the use of Whittaker and Andoyer symplectic charts, for which all but one coordinates are cyclic in the Hamilton-Jacobi equation, we provide whole families of canonical transformations, among which one recognizes the familiar ones used in orbital and attitude dynamics. In addition, new canonical transformations are demonstrated.Comment: 21 page

    Adult non-communicable disease mortality in Africa and Asia: evidence from INDEPTH Health and Demographic Surveillance System sites.

    Get PDF
    BACKGROUND: Mortality from non-communicable diseases (NCDs) is a major global issue, as other categories of mortality have diminished and life expectancy has increased. The World Health Organization's Member States have called for a 25% reduction in premature NCD mortality by 2025, which can only be achieved by substantial reductions in risk factors and improvements in the management of chronic conditions. A high burden of NCD mortality among much older people, who have survived other hazards, is inevitable. The INDEPTH Network collects detailed individual data within defined Health and Demographic Surveillance sites. By registering deaths and carrying out verbal autopsies to determine cause of death across many such sites, using standardised methods, the Network seeks to generate population-based mortality statistics that are not otherwise available. OBJECTIVE: To describe patterns of adult NCD mortality from INDEPTH Network sites across Africa and Asia, according to the WHO 2012 verbal autopsy (VA) cause categories, with separate consideration of premature (15-64 years) and older (65+ years) NCD mortality. DESIGN: All adult deaths at INDEPTH sites are routinely registered and followed up with VA interviews. For this study, VA archives were transformed into the WHO 2012 VA standard format and processed using the InterVA-4 model to assign cause of death. Routine surveillance data also provide person-time denominators for mortality rates. RESULTS: A total of 80,726 adult (over 15 years) deaths were documented over 7,423,497 person-years of observation. NCDs were attributed as the cause for 35.6% of these deaths. Slightly less than half of adult NCD deaths occurred in the 15-64 age group. Detailed results are presented by age and sex for leading causes of NCD mortality. Per-site rates of NCD mortality were significantly correlated with rates of HIV/AIDS-related mortality. CONCLUSIONS: These findings present important evidence on the distribution of NCD mortality across a wide range of African and Asian settings. This comes against a background of global concern about the burden of NCD mortality, especially among adults aged under 70, and provides an important baseline for future work

    Cutoff Scanning Matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns

    Get PDF
    BACKGROUND: The unforgiving pace of growth of available biological data has increased the demand for efficient and scalable paradigms, models and methodologies for automatic annotation. In this paper, we present a novel structure-based protein function prediction and structural classification method: Cutoff Scanning Matrix (CSM). CSM generates feature vectors that represent distance patterns between protein residues. These feature vectors are then used as evidence for classification. Singular value decomposition is used as a preprocessing step to reduce dimensionality and noise. The aspect of protein function considered in the present work is enzyme activity. A series of experiments was performed on datasets based on Enzyme Commission (EC) numbers and mechanistically different enzyme superfamilies as well as other datasets derived from SCOP release 1.75. RESULTS: CSM was able to achieve a precision of up to 99% after SVD preprocessing for a database derived from manually curated protein superfamilies and up to 95% for a dataset of the 950 most-populated EC numbers. Moreover, we conducted experiments to verify our ability to assign SCOP class, superfamily, family and fold to protein domains. An experiment using the whole set of domains found in last SCOP version yielded high levels of precision and recall (up to 95%). Finally, we compared our structural classification results with those in the literature to place this work into context. Our method was capable of significantly improving the recall of a previous study while preserving a compatible precision level. CONCLUSIONS: We showed that the patterns derived from CSMs could effectively be used to predict protein function and thus help with automatic function annotation. We also demonstrated that our method is effective in structural classification tasks. These facts reinforce the idea that the pattern of inter-residue distances is an important component of family structural signatures. Furthermore, singular value decomposition provided a consistent increase in precision and recall, which makes it an important preprocessing step when dealing with noisy data
    • …
    corecore