3 research outputs found

    pcaGoPromoter - An R Package for Biological and Regulatory Interpretation of Principal Components in Genome-Wide Gene Expression Data

    Get PDF
    Analyzing data obtained from genome-wide gene expression experiments is challenging due to the quantity of variables, the need for multivariate analyses, and the demands of managing large amounts of data. Here we present the R package pcaGoPromoter, which facilitates the interpretation of genome-wide expression data and overcomes the aforementioned problems. In the first step, principal component analysis (PCA) is applied to survey any differences between experiments and possible groupings. The next step is the interpretation of the principal components with respect to both biological function and regulation by predicted transcription factor binding sites. The robustness of the results is evaluated using cross-validation, and illustrative plots of PCA scores and gene ontology terms are available. pcaGoPromoter works with any platform that uses gene symbols or Entrez IDs as probe identifiers. In addition, support for several popular Affymetrix GeneChip platforms is provided. To illustrate the features of the pcaGoPromoter package a serum stimulation experiment was performed and the genome-wide gene expression in the resulting samples was profiled using the Affymetrix Human Genome U133 Plus 2.0 chip. Array data were analyzed using pcaGoPromoter package tools, resulting in a clear separation of the experiments into three groups: controls, serum only and serum with inhibitor. Functional annotation of the axes in the PCA score plot showed the expected serum-promoted biological processes, e.g., cell cycle progression and the predicted involvement of expected transcription factors, including E2F. In addition, unexpected results, e.g., cholesterol synthesis in serum-depleted cells and NF-ÎșB activation in inhibitor treated cells, were noted. In summary, the pcaGoPromoter R package provides a collection of tools for analyzing gene expression data. These tools give an overview of the input data via PCA, functional interpretation by gene ontology terms (biological processes), and an indication of the involvement of possible transcription factors

    Recent advances on smart glycoconjugate vaccines in infections and cancer

    No full text
    Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as “tumor-associated carbohydrate antigens”. Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy
    corecore