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Abstract

Background: Interpretation of gene expression microarray data in the light of external information on both columns
and rows (experimental variables and gene annotations) facilitates the extraction of pertinent information hidden in
these complex data. Biologists classically interpret genes of interest after retrieving functional information from a
subset of genes of interest. Transcription factors play an important role in orchestrating the regulation of gene
expression. Their activity can be deduced by examining the presence of putative transcription factors binding sites in
the gene promoter regions.

Results: In this paper we present the multivariate statistical method RLQ which aims to analyze microarray data
where additional information is available on both genes and samples. As an illustrative example, we applied RLQ
methodology to analyze transcription factor activity associated with the time-course effect of steroids on the growth
of primary human lung fibroblasts. RLQ could successfully predict transcription factor activity, and could integrate
various other sources of external information in the main frame of the analysis. The approach was validated by means
of alternative statistical methods and biological validation.

Conclusions: RLQ provides an efficient way of extracting and visualizing structures present in a gene expression
dataset by directly modeling the link between experimental variables and gene annotations.

Background
Gene expression microarray technology enables simulta-
neous monitoring of the expression level of thousands of
genes. The biological interpretation of gene expression
microarray findings remains challenging since it gener-
ally requires the explicit link to supplementary knowl-
edge related to the function of genes and their inter-
connections through functional networks [1].
Information on samples, usually related to the design of

experiments (e.g. disease classes, treatment, time-course
effect, replicates, etc.), is commonly integrated and mod-
eled in the main analysis in order to identify genes which
are specifically dysregulated under certain pre-defined
conditions. In a second step, a selection of genes of
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interest is classically interpreted in the light of exter-
nal information including functional annotations derived
from various knowledge databases such as Gene Ontology
[2] or KEGG (Kyoto Encyclopedia of Genes andGenomes)
molecular pathways [3]. These two steps (gene extrac-
tion followed by interpretation) are generally distinct and
come sequentially. We hypothesize that treating these
two analytical steps in one single integrated manner can
facilitate the interpretation of gene expression microarray
data.
Transcription factors are regulatory elements which

bind to specific DNA sequences generally located in the
promoter region of genes. They orchestrate the regula-
tion of genes by enhancing or inhibiting their transcrip-
tion. Putative transcription factor binding sites (TFBS)
can be predicted by searching for short specific motifs
in the region upstream of the gene transcription start-
ing site. Identifying TFBS in a list of genes of interest
can help the interpretation of gene expression data in
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the light of the transcription factor activity. The predic-
tion of TFBS in the promoter region of a list of genes
was until recently a tedious task, involving the extraction
of gene promoter sequences, followed by pattern recog-
nition using motif databases such as TRANSFAC [4] or
JASPAR [5]. However, recent bioinformatic developments
allow the automation of most of these complex processes.
Several open-source applications were developed, includ-
ing statistical packages (e.g. the R package MotIV [6]), as
well as various web tools. As an example, Zambelli and
collaborators [7] recently proposed a new application —
pscan — which facilitates the discovery of TFBSs, which
are over- (or under-) represented in a list of genes.
Despite the emergence of novel bioinformatics solu-

tions, methodological improvements are required in order
to integrate TFBS information in the analytical work-flow
of gene expression data and simplify results visualization
and interpretation.
Correspondence analysis (CA) is, together with prin-

cipal component analysis (PCA), a popular ordination
method for the exploratory analysis of gene expression
microarray data. Applications of CA in the field of ’omics
was first described in the early 2000s [8-10]. Since then,
several refinements of CA were described, exploiting
some particular features of the method in order to inves-
tigate patterns of variation present in microarray data.
Besides the table of direct interest (gene expression data),
external information regarding both observations and
genes is generally available. This information can be inte-
grated to CA as shown by Busold and colleagues [11].
The authors proposed to use CA for the exploration of
microarray data in the light of gene ontology annotations.
This supplementary information is superimposed with
the original CA results. CA eventually provides graphi-
cal solutions that allow to visualize in a single plot, genes,
observations, experimental conditions and gene annota-
tions [11,12]. On the other hand, a supervised counter-
part of CA (a.k.a constrained correspondence analysis)
was applied to the analysis of microarray data. Con-
strained CA has the advantage over unsupervised-CA of
taking the external information explicitly into account.
Between-group correspondence analysis (BGA) [13] is an
example where an explanatory variable is used to con-
strain CA. BGA applies when observations are grouped
into categories (e.g. disease classes) defined by one single
nominal variable. BGA tries to best discriminate the per-
group centroids by finding axes that maximize the ratio
of between- over within-group variance. More complex
designs of experiments can be modeled using the general-
ized correspondence analysis with respect to instrumental
variables (CAIV) [14]. Qualitative as well as quantitative
variables can be modeled, positively or negatively (effect
removal), within the framework of CA. Recently, Jeffery
and colleagues [15] combined BGA with an additional

table including the occurrence of transcription factor
binding sites (BG-COI) using co-inertia analysis [16,17].
In this manuscript, we introduce RLQ (R-mode;

Q-mode; L-link between R and Q), to provide a
broader generalization of the analysis of a central table
of interest for which external information on both
rows and columns is available. RLQ is a three-table
ordination method, initially developed in ecological sci-
ence [18,19]. Variations around the same L-structure
principle exist in various fields of science such as food
science (L-PLSR) [20], psychometry [21], consumer pref-
erence analysis [22]. In RLQ, the joint structure of three
tables is analyzed, the central table being treated by
CA.
RLQ analysis is suitable for answering questions such as:

• How can we interpret gene expression data in the
light of external gene annotations?

• How strong is the link between experimental
variables and gene annotations?

• Can we find patterns of variation in the gene
expression data set, which can be both explained by
the sample and gene descriptors?

Throughout this work, we describe the general frame-
work of RLQ and show its applicability for the interpre-
tation of gene expression data in light of external gene
annotations, with a main focus on the presence/absence
of putative TFBS.
In the first section, the mathematical background of

RLQ is described. As an illustration, RLQ is applied
to a biological example where the aim is to explore
the effect of the steroid mometasone furoate (MF)
in the proliferation of primary human lung fibrob-
lasts. The regulatory role of transcription factors in
this example is of specific interest. It will be compared
to the existing knowledge and challenged using alter-
native approaches. Additional biological validation will
be provided. In the final section, the relevance of the
method, as well as its strengths and limitations are dis-
cussed.

Methods
Theory of RLQ analysis
RLQ was used to explore the inter-connections between
three matrices linked together in an L-shape manner
(Figure 1).
Let us define the following three tables:

• L the (n × m) table of gene expression (n genes, m
samples)

• R the (m× p) table including the experimental design
information (m samples, p variables)

• Q the (n × q) table including external information
about genes (n genes, q descriptors)
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Figure 1 Scheme of the RLQ analysis. Three tables are involved: a
central table (L) including the gene expression microarray data, and
two tables (R) and (Q), including external information about rows
(sample information, usually described by experimental variables) and
columns (gene annotations, including e.g. the occurrence of
transcription factor binding sites — TFBS), respectively.

The inter-relationship between the three tables is ana-
lyzed by performing singular value decomposition (SVD)
of the following: RT

0 LT0Q0. The matrices (R0,L0,Q0)
derive from the original (R,L,Q) matrices after the fol-
lowing transformations.
The central table L is treated by correspondence analysis

(CA). In the scheme of CA, the table is converted into a
χ2 distance matrix L0 defined as follows:

L0 = D−1
r (P − rcT )D−1

c (1)

with P = L/N the data matrix divided by its grand total,
r the n-dim vector of row sums of P, c the m-dim vector
of column sums of P, Dr = diag(r) and Dc = diag(c) the
diagonal matrices of the row sums and the column sums
respectively.
Let Z be the cross-product Z = RT

0 L
T
0 Q0. The singular

value decomposition of Z can be written as follows:

Z = U�VT (2)

with � the k× k (k = rank(Z)) diagonal matrix of singular
values associated with Z with λ1 ≥ · · · ≥ λk > 0, U an
(m×k) matrix whose columns are the left singular vectors
of Z and V an n × k matrix whose columns are the right
singular vectors of Z. The rows of U and V are orthogonal
with respect to Dr and Dc respectively:

UTDrU = VTDcV = I (3)

The principal components and row coordinates are
respectively given by D−1/2

r U and D−1/2
r U�. The princi-

pal axes and column coordinates are respectively given by
D−1/2

c V and D−1/2
c V�.

Through this particular procedure, where the central
table L is analyzed by correspondence analysis, RLQ anal-
ysis maximizes the covariance between linear combina-
tions of columns of R andQ.
In order to test the link between the experimental design

and the gene annotations, the fourth-corner statistic was
used [19,23]. This permutation procedure tests the null-
hypothesis of absence of link between tables Q and R
mediated by L. The permutations are performed within
each row of table L.
The transformation applied to R depends on the nature

of the data (quantitative, qualitative, fuzzy coded, etc.).
In the particular case where R only includes quantita-
tive variables, R0 is obtained by normalizing R column-
wise (centered by the weighted mean, and divided by the
standard deviation). Row weights are set by the column
weights of the previous CA procedure (c).
Similarly, the transformation applied to Q depends on

the nature of the data. When Q only includes quantita-
tive variables, Q0 is obtained by normalizing Q column-
wise (centered by the weighted mean, and divided by the
standard deviation). Row weights correspond to the row
weights of the previous CA procedure (r).

Transcription factor binding sites and functional
annotations
TFBSs were extracted using the stand-alone version of the
pscan software [7]. The original Affymetrix IDs needed
first to be converted into RefSeq IDs. The following
options were used: the TFBS database was TRANSFAC;
the mapping was based on the promoter region speci-
fied as 450 bases upstream and 50 bases downstream the
gene transcription starting site. Pscan outcome resulted in
z-scores matrix linking each gene with each TFBS. High
scores reflect a higher chance of presence of a given TFBS
in the promoter region as compared to the genome-wide
mean, whereas low scores reflect a lower chance of the
presence of a given TFBS in a given gene promoter region
as compared to the genome-wide mean. In turn, this z-
scores matrix was used to build the occurrence matrix
(table Q) in the RLQ analysis. The occurrence matrix
reflects the presence/absence (0/1) of TFBS in a list of
genes. We considered that z-scores superior to 2 reflects
the actual presence of a given TFBS in the promoter
region of the gene. The transformation of the quantita-
tive z-score matrix into a qualitative occurrence matrix
was decided in order to focus on TFBSs with the high-
est confidence. This resulted in a more sensitive analysis
with a better readability of the results. The table of TFBS
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occurrence included 282 TFBS entries. Notice that some
TFBS from the TRANSFAC database have several acces-
sion number corresponding to different motifs specific
to the same TFBS. This explains why some TFBS are
sometimes displayed more than once.
Molecular KEGG pathways and Gene Ontology anno-

tations were directly retrieved using the hgu133a.db
meta-data package. A table of KEGG term occurrence
(table Q) was built based on the presence/absence of
KEGG annotations for each of the investigated genes. Fol-
lowing this procedure, a total of 87 KEGG terms were
specifically integrated. Similarly the table of GO terms
occurrence (restricted to biological process domain)
included 694 entries.

Comparison with current standards
The results obtained by RLQ analysis were compared
to TFBS enrichment analysis. Over-represented TFBS
motifs were extracted using pscan. The TRANSFACmotif
database was used with the same setting as the one used
to generate the TFBS occurrence matrix in RLQ anal-
ysis. The TFBS enrichments are given by z-score test
p-values. In addition, RLQ was compared with 3 com-
peting ordination methods: CA, BG-COI and L-PLSR.
The three ordination methods used in this comparison
rely on three different schemes. Correspondence analy-
sis is a 1-table ordination method, where supplementary
information about rows and columns can be projected a
posteriori. Between-group coinertia analysis is a 2-table
ordination method where the main table (gene expression
data) is constrained observation-wise by a single categori-
cal variable defining groups among observations. L-PLSR
is a 3-table ordination method where all three tables (gene
expression data and its row/column external informa-
tion) are treated symmetrically. All these methods were
applied to explore the transcription factor activity asso-
ciated with MF (including all 22’283 probe sets). Their
relative performance was assessed and compared to RLQ.

Mometasone furoate dataset
In this dataset, we investigated the time-course effect
of the glucocorticoid mometasone furoate (MF) on pri-
mary human lung fibroblasts. Two cell lines of fibroblasts
were established from pulmonary biopsies obtained from
patients undergoing lobectomie or pneumonectomy for
peripheral lung cancer as described elsewhere [24]. Cells
were cultured in RPMI 1640, 5% FCS, 20 mM HEPES or
DMEM, 10% FCS, MEM vitamins. All cell culture media
and additives were purchased from Facola/Seromed
(Basel, Switzerland). Treatment and experiments were
performed between passages 2 and 5. Before the prepara-
tion of nuclear and cytosolic extracts, cells were subcul-
tured in Petri dishes and kept for 24 to 48 h in serum-rich
medium until they reached 60-80% confluency. Prior to

treatment, cells were serum deprived for 24 h with 0.1%
FCS. Low serum medium was exchanged every 12 h. MF
was diluted in 100% ethanol and added to the medium
with a final concentration of 10−8M. Cell lines were har-
vested and gene profiled at 8 time points (baseline, 20’, 40’,
1 h, 1.5 h, 2 h, 3 h and 6 h). The gene expression level
wasmonitored according to themanufacturer recommen-
dations using the Affymetrix Genechip Human Genome
U133A platform which measured 22’283 probe set inten-
sity levels (raw files have been deposited in NCBI’s Gene
Expression Omnibus (GEO) and are accessible through
GEO series accession number GSE30242).

Statistical considerations and implementations
All calculations were done using the R statistical soft-
ware including the package ade4 [25], as well as packages
from Bioconductor [26] including affy, hgu133a.db,
annotate, seqinr, GO.db. Gene expression data were
normalized using the robust multichip average (RMA)
method [27].
The RLQ procedure is implemented in the package

ade4 with the function rlq. It requires the use of three
separate analyses of tables R, L and Q which are com-
bined using the function rlq. As previously mentioned, the
central table L must be treated by CA, whereas the anal-
ysis of the two other tables (R and Q) depends on the
nature of the variables (principal component analysis for
quantitative variables, multiple correspondence for qual-
itative variables, Hillsmith analysis for a mixed table of
quantitative and qualitative variables, etc.).
The ade4 package also includes Monte-Carlo permu-

tation tests specifically implemented for rlq, as well as
the function fourthcorner which is the implementation of
the fourth-corner statistic measuring and testing the link
between the three tables [19,23].
A wrap-up package (R package rlqomics) that helps

to automate these analytical steps in the frame of
genomics analysis was developed and is available upon
request.

Results
Time course effect of mometasone furoate on the
proliferation of lung fibroblasts
To provide a concrete application of RLQ, we analyzed the
time course effect of the glucocorticoid MF on the prolif-
eration of primary human lung fibroblasts in the light of
transcription factor activity. Two cell lines treated by MF
were monitored at 8 time points.
The genes which were mostly dysregulated during the

time-course of MF treatment are described in Table 1.
These genes included among others various key genes
associated with the general mechanisms of the known
action of glucocorticoids, such as the inhibition of
the transcription of proinflammatory genes via specific
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Table 1 List of the 100 genesmostly associated with the time-course effect of mometasone furoate on the proliferation
of fibroblasts

AffyID RefSeq Symbol Name

204908_s_at NM_005178 BCL3 B-cell CLL/lymphoma 3

207510_at NM_000710 BDKRB1 bradykinin receptor B1

221530_s_at NM_030762 BHLHE41 basic helix-loop-helix family, member e41

210538_s_at NM_001165 BIRC3 baculoviral IAP repeat containing 3

209183_s_at NM_007021 C10orf10 chromosome 10 open reading frame 10

209182_s_at NM_007021 C10orf10 chromosome 10 open reading frame 10

218723_s_at NM_014059 C13orf15 chromosome 13 open reading frame 15

216598_s_at NM_002982 CCL2 chemokine (C-C motif) ligand 2

208075_s_at NM_006273 CCL7 chemokine (C-C motif) ligand 7

220351_at NM_016557 CCRL1 chemokine (C-C motif) receptor-like 1

219343_at NM_017913 CDC37L1 cell division cycle 37 homolog (S. cerevisiae)-like 1

209112_at NM_004064 CDKN1B cyclin-dependent kinase inhibitor 1B (p27, Kip1)

213006_at NM_005195 CEBPD CCAAT/enhancer binding protein (C/EBP), delta

206100_at NM_001005502 CPM carboxypeptidase M

209774_x_at NM_002089 CXCL2 chemokine (C-X-C motif) ligand 2

207850_at NM_002090 CXCL3 chemokine (C-X-C motif) ligand 3

202887_s_at NM_019058 DDIT4 DNA-damage-inducible transcript 4

208892_s_at NM_001946 DUSP6 dual specificity phosphatase 6

208891_at NM_001946 DUSP6 dual specificity phosphatase 6

208893_s_at NM_001946 DUSP6 dual specificity phosphatase 6

218995_s_at NM_001168319 EDN1 endothelin 1

201694_s_at NM_001964 EGR1 early growth response 1

201693_s_at NM_001964 EGR1 early growth response 1

204560_at NM_001145775 FKBP5 FK506 binding protein 5

202724_s_at NM_002015 FOXO1 forkhead box O1

202723_s_at NM_002015 FOXO1 forkhead box O1

209990_s_at NM_005458 GABBR2 gamma-aminobutyric acid (GABA) B receptor, 2

217077_s_at NM_005458 GABBR2 gamma-aminobutyric acid (GABA) B receptor, 2

204457_s_at NM_002048 GAS1 growth arrest-specific 1

210002_at NM_005257 GATA6 GATA binding protein 6

221577_x_at NM_004864 GDF15 growth differentiation factor 15

200648_s_at NM_001033044 GLUL glutamate-ammonia ligase

217202_s_at NM_001033044 GLUL glutamate-ammonia ligase

209170_s_at NM_001001994 GPM6B glycoprotein M6B

206432_at NM_005328 HAS2 hyaluronan synthase 2

38037_at NM_001945 HBEGF heparin-binding EGF-like growth factor

203821_at NM_001945 HBEGF heparin-binding EGF-like growth factor

215933_s_at NM_002729 HHEX hematopoietically expressed homeobox

204689_at NM_002729 HHEX hematopoietically expressed homeobox

204512_at NM_002114 HIVEP1 human immunodeficiency virus type I enhancer binding protein 1

208808_s_at NM_001130688 HMGB2 high-mobility group box 2

213844_at NM_019102 HOXA5 homeobox A5

202081_at NM_004907 IER2 immediate early response 2
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Table 1 List of the 100 genesmostly associated with the time-course effect of mometasone furoate on the proliferation
of fibroblasts (Continued)

201631_s_at NM_003897 IER3 immediate early response 3

206924_at NM_000641 IL11 interleukin 11

209821_at NM_001199640 IL33 interleukin 33

205207_at NM_000600 IL6 interleukin 6 (interferon, beta 2)

211506_s_at NM_000584 IL8 interleukin 8

202859_x_at NM_000584 IL8 interleukin 8

203126_at NM_014214 IMPA2 inositol(myo)-1(or 4)-monophosphatase 2

213817_at NM_001142523 IRAK3 interleukin-1 receptor-associated kinase 3

209184_s_at NM_003749 IRS2 insulin receptor substrate 2

209185_s_at NM_003749 IRS2 insulin receptor substrate 2

201466_s_at NM_002228 JUN jun proto-oncogene

201464_x_at NM_002228 JUN jun proto-oncogene

201473_at NM_002229 JUNB jun B proto-oncogene

213005_s_at NM_015158 KANK1 KN motif and ankyrin repeat domains 1

203543_s_at NM_001206 KLF9 Kruppel-like factor 9

203542_s_at NM_001206 KLF9 Kruppel-like factor 9

205266_at NM_002309 LIF leukemia inhibitory factor (cholinergic differentiation factor)

218816_at NM_018214 LRRC1 leucine rich repeat containing 1

219573_at NM_001173977 LRRC16A leucine rich repeat containing 16A

204389_at NM_000240 MAOA monoamine oxidase A

204918_s_at NM_004529 MLLT3 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog,
Drosoph

217546_at NM_176870 MT1M metallothionein 1M

206814_at NM_002506 NGF nerve growth factor (beta polypeptide)

212240_s_at NM_181504 PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

212249_at NM_181504 PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

212239_at NM_181504 PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

201939_at NM_006622 PLK2 polo-like kinase 2

204286_s_at NM_021127 PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1

204285_s_at NM_021127 PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1

209815_at NM_000264 PTCH1 patched 1

204748_at NM_000963 PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase
and

204338_s_at NM_001102445 RGS4 regulator of G-protein signaling 4

204337_at NM_001102445 RGS4 regulator of G-protein signaling 4

204339_s_at NM_001102445 RGS4 regulator of G-protein signaling 4

204802_at NM_001128850 RRAD Ras-related associated with diabetes

204900_x_at NM_003864 SAP30 Sin3A-associated protein, 30kDa

204614_at NM_001143818 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2

209681_at NM_006996 SLC19A2 solute carrier family 19 (thiamine transporter), member 2

203908_at NM_001098484 SLC4A4 solute carrier family 4, sodium bicarbonate cotransporter, member 4

209884_s_at NM_003615 SLC4A7 solute carrier family 4, sodium bicarbonate cotransporter, member 7

210286_s_at NM_003615 SLC4A7 solute carrier family 4, sodium bicarbonate cotransporter, member 7

203372_s_at NM_003877 SOCS2 suppressor of cytokine signaling 2

202935_s_at NM_000346 SOX9 SRY (sex determining region Y)-box 9
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Table 1 List of the 100 genesmostly associated with the time-course effect of mometasone furoate on the proliferation
of fibroblasts (Continued)

202936_s_at NM_000346 SOX9 SRY (sex determining region Y)-box 9

204597_x_at NM_003155 STC1 stanniocalcin 1

204731_at NM_001195683 TGFBR3 transforming growth factor, beta receptor III

220486_x_at NM_017698 TMEM164 transmembrane protein 164

206025_s_at NM_007115 TNFAIP6 tumor necrosis factor, alpha-induced protein 6

206026_s_at NM_007115 TNFAIP6 tumor necrosis factor, alpha-induced protein 6

204933_s_at NM_002546 TNFRSF11B tumor necrosis factor receptor superfamily, member 11b

204932_at NM_002546 TNFRSF11B tumor necrosis factor receptor superfamily, member 11b

202478_at NM_021643 TRIB2 tribbles homolog 2 (Drosophila)

208763_s_at NM_001015881 TSC22D3 TSC22 domain family, member 3

206796_at NM_001204869 WISP1 WNT1 inducible signaling pathway protein 1

205883_at NM_001018011 ZBTB16 zinc finger and BTB domain containing 16

207513_s_at NM_003452 ZNF189 zinc finger protein 189

220987_s_at

The following information is included: Affymetrix identifiers, RefSeq identifiers, Gene symbols and complete gene description. For convenience, rows were ordered
alphabetically according to gene symbols.

transcription factors [28]. Accordingly, our results showed
that MF down-regulated genes involved in the initia-
tion and maintenance of inflammation, e.g. chemokines
(CCL2, CCL7, CCRL1, CXCL2, CXCL3), interleukines
(IL6, IL8, IL11, IL33), early response genes (EGR1, IER2,
IER3) and transcription factors such as PI3K or FOXO1.

RLQ analysis and transcription factors activity
The presence of putative TFBSs was assessed using pscan.
In this example, RLQ analysis was based on the 100
genes mostly dysregulated during the time course effect of
MF (Table 1). The transcription factors activity described
below is measured by the presence of TFBSs that pre-
sumably belong (according to pscan predictions) to the
promoter region of the most dysregulated genes. The
putative transcription factors activity is summarized by an
RLQ biplot (Figure 2). The biplot representation depicts
the activity of transcription factors varying over time, as
measured on the first 2 axes of RLQ. Biplots in RLQ
should be interpreted similarly to biplots of other ordi-
nation methods. Both variables (TFBS) and observations
(time points) are displayed. The TFBSs that mostly explain
the variability extracted by the RLQ axes are the ones with
the highest absolute scores (TFBSs located at the extrem-
ity of these axes). The further away the TFBSs are from the
origin of the axes, the stronger they are associated with the
time points lying towards the same direction. The cosine
of the angle formed by two TFBSs indicates the correla-
tion between these two TFBSs. Two TFBSs located in the
opposite direction in the biplot (relatively to the origin of
the axes) are inversely correlated.

The first 2 axes of the RLQ analysis summarize the
vast majority of the total inertia (83% on the first axis
and 14% on the second). RLQ analysis shows a gra-
dient in the time course effect of MF associated with
the first RLQ axis. Early time points correlate with
low scores on the first axis whereas late time points
correlate with high scores on the first axis. The sec-
ond axis separates the intermediate to the extreme time
points. When considering the 2 axes together, the differ-
ent time points are distributed according to a U-shape.
This effect, known as horseshoe effect, outlines the tran-
scriptional changes over time as the effect of the action
of MF. Although this effect results of a distortion of
the ordination diagram, it facilitates the biplot-based
interpretation of the activated TF along a unidirectional
time gradient. Considering that the activity of MF is
effective within 1-2 hours, the effect of MF can be sub-
divided into early and late effects. In Figure 2, the TFBSs
associated with genes that are early up-regulated (time
1.5-2 h) are located in the lower right quadrant, whereas
TFBSs associated with genes that are late up-regulated
(time 3-6 h) are located in the upper right quadrant
of the biplot. At the opposite directions, one can iden-
tify TFBSs which are associated with genes that are
early down-regulated (upper left quadrant), as well as
TFBSs associated with genes that are late down-regulated
(lower left quadrant).
The forkhead-related activator 2, 3, and 4 (Freac 2, Freac

3, Freac 4), as well as cMyb are TFBSs which are promi-
nently present in genes that are early up-regulated due to
the effect of MF. The transcription factor c-Myb is known
to play an important role in the regulation of cellular
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Figure 2 RLQ analysis of the time course effect of mometasone furoate in the light of the activity of transcription factors. This biplot
representation (2 first axes of RLQ analysis) displays the TFBSs which are over-represented at specific time points. Framed labels show the time course.
The transcription factors are displayed as stars, among which the 20 most influential are labeled. The upper right d value displays the grid scale.

proliferation and differentiation. CREB, CRE-BP1, NF-1
(nuclear factor 1) are transcription factors which are asso-
ciated with late up-regulated genes by MF. In the opposite
direction (left quadrants), TFBSs which were present in
down-regulated genes included AP1-2, transcription fac-
tors involved in cellular differentiation, proliferation and
apoptosis. In Figure 2, NF-κB and cRel were both found
in the opposite direction (upper-left corner) from the
early time points (times 1.5-2 h), suggesting an early
inhibition of this transcription factor by MF. The com-
bined role of NF-κB and AP-1 transcription factors in
the action of steroids is well documented in the literature
[29,30]. As confirmed by the RLQ analysis, the repres-
sion of these transcription factors corresponds to the
mechanism underlying the anti-inflammatory efficacy of
corticosteroids [31,32]. Our data suggest that the octamer
transcription factor 1 (OCT-1) is involved in the early
down-regulation of genes byMF. Prior work indicated that
OCT-1 cooperates synergistically with the glucocorticoid
receptor (GR) in restricting transcriptional cooperativ-
ity to promoters containing DNA binding sites for both
factors [33].
A permutation test based on the total inertia computed

by RLQ analysis showed a significant link between R
and Q through L (p < 0.001). Another measure of the

link between the three tables was further computed using
the fourth-corner statistics. This procedure provides a
synthetic representation of the TFBS activity over time
(Additional file 1: Figure S1).

Biological validation of the transcription factor activity
The activity of transcription factors OCT-1 and CREB
was further investigated using protein analysis by West-
ern blotting. Based on our RLQ findings, OCT-1 and
CREB have a strong activity associated with MF treat-
ment. According to predictions summarized in the RLQ
biplot (Figure 2), the high level of OCT-1 activity at
baseline decreased over time, whereas CREB activity
showed an increase within 2 hours. Figure 3 shows the
protein expression time course (0-2 hours) of OCT-
1 and CREB in the nuclear compartment of primary
lung fibroblasts treated by MF. OCT-1 is present in the
nucleus at early time points and is rapidly decreasing
after steroid treatment. In addition, by comparing the
protein expression level in the nucleus and the cytosol
(Additional file 1: Figure S2), one can see that OCT-1
is decreasing from both compartments. This decrease of
OCT-1 in the cytosol could be explained by either an
increase of protein degradation or a reduction of de novo
synthesis. In contrast, CREB is not present in the nucleus



Baty et al. BMC Bioinformatics 2013, 14:178 Page 9 of 15
http://www.biomedcentral.com/1471-2105/14/178

0 10 20 45 60 120
Time after MF treatment (min)

CREB

OCT−1

10000

20000

30000

40000

50000

0 20 40 60 80 100 120
Time after MF treatment (min)

N
uc

le
ar

 p
ro

te
in

 e
xp

re
ss

io
n 

le
ve

l (
ar

bi
tr

ar
y 

un
it)

Protein

CREB

OCT1

Figure 3 Biological validation of the time course effect of mometasone furoate in the OCT-1 and CREB expression level. The upper panel
shows the expression levels of nuclear OCT-1 and CREB in primary human lung fibroblasts. The lower panel displays the kinetics of nuclear OCT-1
and CREB protein levels. Data shown are typical for three independently performed experiments.

(only in the cytosol) at early time points, and after 45
min of MF treatment, it is translocated into the nucleus.
Here MF acts predominantly by translocating the CREB
protein, since the total of nuclear plus cytosolic CREB
levels remains constant (indicating no significant netto
cytosolic protein degradation) (Additional file 1: Figure
S2). It is notable that the expression of OCT-1 increased
after 60 minutes. However, protein analysis suggested that
this occurs because of a decreasing level of cytosolic pro-
tein. Overall, MF induces a reduction of OCT-1 protein

levels, and it induces a translocation of activated CREB
within the first 2 hours, which is in agreement with RLQ
predictions.

RLQ analysis and other publicly available gene annotations
The same data set was analyzed in the light of other func-
tional feature databases including KEGG biochemical
pathways and Gene Ontology (GO). Figure 4 summarizes
the RLQ analyses made at these 2 additional levels.The
left panel displays the KEGG analysis of the MF dataset.
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Figure 4 RLQ analysis of the time-course effect of MF in the light of publicly available information (biplot representations on the 2 first
RLQ axes). The left panel provides an overview of the KEGG molecular pathways associated with the time course effect of mometasone furoate.
The right panel displays the relevant GO terms that best relate to the time course effect of mometasone furoate. The framed labels display the time
course, whereas KEGG and GO terms are represented as stars, among which the 20 most influential are labeled. The upper right d value displays the
grid scale.

The interpretation of the biplot follows the same process
as for the TFBS analysis. Down-regulated genes (left
quadrants) involve cytokine-cytokine receptor interac-
tions pathways (KEGG 04060), whereas genes that are
early up-regulated (lower right quadrant) are involved in
pathways such as Type II diabetes mellitus (KEGG 04930)
and insulin signaling pathway (KEGG 04910).
The right panel displays the GO analysis of the MF

dataset. Genes down-regulated due to the effect of
MF are associated with response to drug (GO:0042493)
or response to organic cyclic compound (GO:0014070)
(upper-left quadrant). After one hour, MF affects genes
involved in inflammatory response (GO:0006954) and
signal transduction (GO:0007165). At later time points
(upper-right quadrant), genes that belong to functional
categories such as insulin receptor signaling pathways
(GO:0008286) and phosphotidylinositol-mediated signal-
ing (GO:0048015) are over-represented.

Comparison of RLQ analysis with alternative approaches
Enrichment analysis
The prediction of TFBS motifs in our MF dataset was
analyzed using enrichment analysis (EA). The pscan soft-
ware tool was used to identify over-represented TFBS
motifs in the previously described list of 100 most dys-
regulated genes (Table 1). The 20 most significantly over-
represented TFBS (p < 0.1) were compared to the 20
most influential TFBS identified by RLQ and highlighted

in Figure 2. Table 2 provides a summary of the TFBS
motifs identified by either of the 2 methods. Common
findings revealed by the 2 methods include the prominent
role played by the NF-κB/Rel transcription factor fam-
ily. Among the transcription factors specifically extracted
by RLQ, the forkhead family of transcription factors
(FREAC2, FREAC3, FREAC4), regulating the expression
of genes involved in cell proliferation, is activated in inter-
mediate time points. Other TFBS specifically highlighted
by RLQ are the transcription factors CREB, cMyb and
CRE-P1 which are known to interact in the mechanisms
of action of glucocorticoids. It is worth noting that the 2
transcription factors validated by Western blotting could
not be identified using enrichment analysis.
The advantage of using RLQ analysis over EA is that

the interpretation based on a single biplot is direct. The
biplot representation shows associations between the time
course effect of MF and the activation of transcription
factors. Using EA, one has to identify the most enriched
TFBS, then determine the genes that carry these TFBS (as
well as the nature of the dysregulation), and finally inter-
pret the role of transcription factors in the experiment.
Discrepancies between the two approaches are partly due
to the univariate nature of EA.When using RLQ analy-
sis, functional annotation terms are treated in a multi-
variate fashion. This ensures that the presence of pos-
sible interactions and co-variations is accounted for in
the analysis.
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Table 2 Enrichment analysis of transcription factor binding sites

TFBS Enrichment Analysis (p−value) RLQ Description

AP-1 (C) × Activator protein 1. Signal transduction cascademedi-
ated by glucocorticoids [30]

AP-1 (Q6) × —

AP-2 (Alpha) × (0.0853) Activating-protein 2. Regulatory roles in early devel-
opment, apoptosis and cell-cycle control

AP-2 (Q6) × (0.0618) —

ATF × Activating transcription factor (class of AP-1 transcrip-
tion factors dimers).

Brachyury × Transcription factor over-expressed in numerous lung
tumor. Known to mediate epithelial-mesenchymal
transition and promote invasion.

CDPCR3HD × Cut-like homeodomain protein

c-Myb × Myb proto-oncogene protein. Regulation of cell pro-
liferation/differentiation, regulation of human gluco-
corticoid receptor [34]

CRE-BP1 × Activating transcription factor 2. <Activation of tran-
scription by interaction with glucocorticoid response
elements [33]

CREB × cAMP response element-binding protein.

c-Rel × (0.0009) × Proto-oncogene c-Rel. Member of the NF-κB family.

Freac2 × Forkhead-related activator. Differential activa-
tion of lung specific genes. Involved in cell
growth/proliferation mechanisms

Freac3 × —

Freac4 × —

GATA-1 × GATA-binding protein 1 (globin transcription factor 1).
Involved in cell growth, cancer.

MAZR × (0.0006) Zinc finger protein related factor.

MZF1 (01) × (0.0012) Myeloid zinc finger protein. Control of cell prolifera-
tion.

MZF1 (02) × (0.0196) —

NF1 × Nuclear factor 1. Chromatin remodeling and transcrip-
tional activation.

NF-κB × (0.0043) Nuclear factor κB. Anti-inflammatory action of
steroids [31].

NF-κB 50 × (0.0035) —

NF-κB 65 × (< .0001) × —

NF-κB C × (0.0317) —

NF-κB Q6 × (0.0027) × —

Oct-1 × Octamer-binding transcription factor 1.

Olf-1 × (0.0404) × Olfactory neuron-specific factor.

Sp1 × (0.0313) Stimulating protein 1. Ubiquitous zinc finger tran-
scription factor.

Spz1 × (< .0001) × Spermatogenic leucine zipper protein 1.

STAT × (0.0661) Signal transducer and activator of transcription.
Transcription factors in cytokine-mediated biological
responses.

STAT1 × (0.0021) —

TATA (01) × (0.0015) Cellular and viral TATA box elements.

TATA (C) × (0.0345) —

TAXCREB × (0.0389) Tax/CREB complex.
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Table 2 Enrichment analysis of transcription factor binding sites (Continued)

Tst-1 × (0.0628) Pou domain transcription factor.

VBP × Vitellogenin gene-binding protein.

This table provides the list of the most significant transcription factors identified by enrichment analysis and RLQ analysis. The p-values (z-score tests) of the
enrichment analysis are given. Known biological functions are also provided.

Other ordinationmethods
The following 3 ordination methods were compared to
RLQ:

• Correspondence analysis with projection of
supplementary information on both rows and
columns

• Between-group coinertia analysis (BG-COI)
• L-PLSR

Correspondence analysis (Figure 5, upper left panel),
due to its unsupervised nature, does not allow to depict
appropriately the time course effect ofMF. The time gradi-
ent is only supported by the second axis and the expected
early inhibition of key transcription factors such as NF-κB
combined with AP-1 and c-Rel is not immediately acces-
sible in contrast to the results obtained by RLQ (Figure 5,
lower right panel). When comparing the 50 most con-
tributing TFBS identified by CA and RLQ, an overlap of
26 TFBS (52%) was found.
Between-group coinertia analysis (BG-COI) only dif-

fers from RLQ in the way tables R and L are linked
together (in a symmetrical way for RLQ, and in an
asymmetrical way for BG-COI). The results of BG-COI
shown in Figure 5 (upper right panel) are mostly con-
gruent with the ones obtained by RLQ. The biologi-
cal findings derived by both methods are comparable.
Among the 50 most contributing TFBSs identified by
BG-COI and RLQ, an overlap of 40 TFBSs (80%) was
found.Mathematically, RLQ provides amore general solu-
tion to the 3-table problem with a stronger theoretical
background.
L-PLSR differs from RLQ in the sense that the central

table is treated with a double centered PCA, whereas in
RLQ the main table is treated by CA. In practice, due to
the double-centering performed in L-PLSR, both meth-
ods provided almost identical results apart from a scaling
factor (Figure 5, lower left panel). All of the 50 most con-
tributing TFBS identified by L-PLSR match the ones iden-
tified by RLQ. However, to our knowledge, no implemen-
tation of L-PLSR adapted to genomics data is currently
available.
Overall, the comparison of RLQ with other ordination

methods stress the benefit of actively integrating exter-
nal annotations on rows and columns using supervised
modeling. Important data structures proved to be more
challenging to interpret using unsupervised approaches.
Both BG-COI and L-PLSR provide solutions which are

in agreement with RLQ analysis. RLQ includes key fea-
tures for life scientists, such as an available implemen-
tation of the method itself, together with a series of
graphical tools, as well as various permutation pro-
cedures (Monte-Carlo permutation test, fourth-corner
statistic), and several additional advanced procedures (e.g.
between/within-class RLQ).

Discussion
To date, several approaches have been proposed to inter-
pret gene expression microarray data using external infor-
mation. The classical approach identifies a list of genes of
interest, then interprets these genes in a second step using
tools of functional annotations. CA is a powerful method
to describe sources of variation present in a microar-
ray data set. Using a biplot representation, it is easy to
simultaneously visualize the ordination of samples and to
identify genes that are responsible for this ordination. It
may be useful to include gene annotations directly in the
frame of correspondence analysis. External information
can be inserted by simple projection into the dataset in an
unsupervised fashion as demonstrated by various authors
[11,12]. Although this procedure brings insights which are
helpful for the interpretation of the data, in most exist-
ing studies this additional information is only indirectly
involved in the modeling of the data. In our example, we
showed that this unsupervised approach was only par-
tially effective, the interpretation of the data in the light of
transcription factor activity remaining challenging.
Supervised counterparts of correspondence analysis

were proposed in the literature [13,14]. Jeffery and collab-
orators [15] also described a method (BG-COI) integrat-
ing the information of TFBSs by combining in a 2-table
scheme the gene expression data set (primarily analyzed
by supervised non-symmetric correspondence analysis)
with a TFBS occurrence table (primarily analyzed by prin-
cipal component analysis). The main difference with the
RLQ procedure is that in BG-COI, the first two matrices
(R and L) are combined using a non-symmetrical pro-
cedure (between-class correspondence analysis), whereas
the third table Q (TFBS occurrence) is integrated using
a symmetrical procedure (co-inertia analysis). The ini-
tial asymmetric procedure necessitates a regression step
implying dimensionality constraints in the number of
experimental variables which can be integrated in the
analysis [35]. In simple cases, e.g. when only one sin-
gle categorical variable is used, this does not constitute a



Baty et al. BMC Bioinformatics 2013, 14:178 Page 13 of 15
http://www.biomedcentral.com/1471-2105/14/178

T 0' T 20' 

T 40' 

T 1h 

T 1.5h 

T 2h 

T 3h 

T 6h 

**

*
*

*

**

*

*

**

*
*

*

* ***

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*
*

*

*
*

*

*
*

*

*

*

* * *
*
*

*

*

*
*

* * *
*

*

*

*

*

**

*

****

*

*

*

*

*
*

*
*

*

**

*
* *
*
**

*
*

*

**
*

*

*
*

*

*

*
**

*

*
**

*
*

*

***
*
*

*

*
*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*
**

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*
*

* *

*

*
*

** *
*

*

*

*

*

*

* *

*

*

**
*

*
*

***
*

*

*
*

*

*

*

* *

*

*
*

*

*

* *

*

*

*

**
*

*
*

**

*

*
*

*

**** *

*

*

*
*

*

*

*

*

*

*
*

*
**

**

*

*
*

*

*

*
*

*

*
*

**

****

*

*
*

*

**

**

*
*

*

*

*

*

*****

*

*

*

*

*

*

* *
*

* *

FOXO4

Oct−1
GATA−6

c−Ets−1(p54)

TATA

N−MycNRF−2

Evi−1

NF−Y
CREB

c−Myc:Max

Freac−7

Pbx−1

E2F

TATA

GATA−2

USF c−Myb

Oct−1

Elk−1

Elf−1

FAC1

Olf−1

OCT−x NKX6−1

Staf

MEF−2

E2F

Oct−1

Oct−1
Bach1

MEIS1B:HOXA9

CREB
ATF

HFH−3GATA−1

CRE−BP1

En−1

HAP2/3/4

STAT1

Oct−1

RSRFC4
Lmo2 complex

AP−1

Evi−1

AP−1

Cart−1
NF−kappaB

AhR:Arnt

Evi−1

d=0.5TFBS CA

T 0' 

T 20' 

T 40' 

T 1h 

T 1.5h T 2h 

T 3h 

T 6h 

*

*

***

*

*

* **

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

**

*

**
*

* *
*

*

*

*

*
*

* **
*

*
*

*

*
*

*

*

*

*
*

**
*

*
*

**

* *
*

*
*

*

*
* *

*

*
*

*

*

*

*
**

** *

*

*

*
*

*
*

*

*

*
*

*

*

*

*
*

*

*

**

*
*

* *

*
*

**

**

*

**
*

**
*

*
**

* *

*

*

*
*
*

*

*
*

*

* *

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*
*

*

* * **

*

**

** *
*

*

*

* **

*

*

*
* *

*

* *

*

*

*

*

*
**

*

*

*

*

*

*

* *
*

*
*

*

*

*

*
*

*

* **
*

**
*

*

***

**

*

*
*
* *

*
*

*

*
* *

*

**

*

*

*

*

*
*

*

**

*

**

**

*

** *

*

*

****

*

*

*

*

**

**

*

*
*

*

*
*

*****

*
**

*

*

*

*

*

*

* *

FOXO4

N−Myc

NRF−2

NF−kappaB (p65)

TATA

CREB

Staf

AP−1

Oct−1

c−Ets−1(p54)

c−Myc:Maxc−Rel

Bach1 c−Myb

E2F

Elk−1

NF−kappaB

GATA−2

USF

Arnt

GATA−1
NF−Y

c−Myc:Max

USFNF−kappaB

Oct−1 NF−Y

USF
NKX6−1

OCT−x

Olf−1

CREB

En−1

Staf

SREBP−1

AP−1

Oct−1

E2F

HAP2/3/4

STAT3

AP−1

SRF

ISRE Zic2

c−Myc:Max

NF−kappaB

Bach2

FAC1

Egr−2

FOXO1

d=0.002TFBS BG−COI

T 0' 

T 20' T 40' 

T 1h 

T 1.5h 
T 2h 

T 3h 

T 6h 

*

*

*
*

*

*

*

*
*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*
*

*

**

*

**

*

* *
*

*

*

*

*
* * ***

*
**

*

*

*

*

*

*
*

*

*

*
*

*

**

* **

*

*

*

*
*

*

*

*
*
*

*

*

*

**

*
*

*

*

*

*
*

**

*

*

*

*

*

*

*

**

*
*

**

*
** *

*
*

**
*

*

*

**

*

*

*
*

*

**

*
*

*

*

*

*
*

*

* *

*

* *

*

*

* *

*

*

**

*

*

*

*

*

*

*

* *

*

*
* **

*

*

*

**
*

* *

*

* *
*

*
*

**
*
*

* *

*

*

*

*

*
**

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

** **
*

* *

*

*

***

**

*

*

*
* *

*

*

*

*

* *

*

**

*

*

*

*

*
*

*

*

*

*

*
*

**

*

** *

*

*

****

*

*

*

*

**

**

*

* *

*

**
*****

* **

*
*

*

*

*

*

*
*

CREB

E2F

c−Myc:Max

NF−kappaB (p65)

TATA

N−Myc

Stafc−Rel

NF−kappaB

Bach1
NF−Y

USF

GATA−1

CREB

NRF−2NF−kappaB

AP−1

Arnt

c−Myb

HAP2/3/4

AP−1

c−Myc:Max

Elk−1

SRF

GATA−2

NF−Y

Staf

USF

AP−1

SREBP−1

OCT−x

NF−kappaB

Bach2

Oct−1 Olf−1

SREBP−1

c−Myc:Max

Nkx2−5

ATF

Arnt
CRE−BP1:c−Jun

ISRE

USF

Roaz

Oct−1

Zic2

CRE−BP1

Max

BSAP

AhR:Arnt

d=50TFBS L−PLSR

T 0' 

T 20' T 40' 

T 1h 

T 1.5h 
T 2h 

T 3h 

T 6h 

*

*

*
*

*

*

*

*
*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*
*

*

**

*

**

*

* *
*

*

*

*

*
* * ***

*
**

*

*

*

*

*

*
*

*

*

*
*

*

**

* **

*

*

*

*
*

*

*

*
*
*

*

*

*

**

*
*

*

*

*

*
*

**

*

*

*

*

*

*

*

**

*
*

**

*
** *

*
*

**
*

*

*

**

*

*

*

*

*

**

*
*

*

*

*

*
*

*

* *

*

* *

*

*

* *

*

*

**

*

*

*

*

*

*

*

* *

*

* * **

*

*

*

**
*

* *

*

* *
*

*
*

**
*
*

* *

*

*

*

*

*
**

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

** **
*

* *

*

*

***

**

*

*

*

* *

*

*

*

*

* *

*

**

*

*

*

*

*
*

*

*

*

*

*
*

**

*

** *

*

*

****

*

*

*

*

**

**

*

* *

*

**
*****

* **

*
*

*

*

*

*

*
*

CREB

E2F

c−Myc:Max

NF−kappaB (p65)

TATA N−Myc

Staf
c−Rel

NF−kappaB

Bach1 NF−Y

USF

NF−kappaB

GATA−1

CREB

NRF−2

AP−1

Arnt

c−Myb

HAP2/3/4

AP−1

c−Myc:Max

Elk−1

SRF

GATA−2 NF−Y

Staf

USF

AP−1

SREBP−1

OCT−x

c−Myc:Max

Bach2

Oct−1 Olf−1

SREBP−1

Nkx2−5
ATF

Arnt

USF

NF−kappaB

ISRE

CRE−BP1:c−Jun

Roaz

Oct−1

Zic2

CRE−BP1

Max

BSAP

AhR:Arnt

d=2e−04TFBS RLQ

Figure 5 Comparison of RLQ analysis with 3 alternative ordination methods to explore the transcription factor activity in the time course
effect of mometasone furoate. The upper left panel displays the biplot representation of correspondence analysis (CA) where supplementary
information on both rows and columns were projected. The upper right panel displays the biplot representation of between-group coinertia
analysis (BG-COI). The lower left panel shows the biplot representation of L-PLSR. The lower right panel depicts the RLQ analysis biplot.

limitation. Accordingly, when applying BG-COI to theMF
dataset, the results were comparable to the one obtained
by RLQ with only minor discrepancies. However, in some
other cases, for example when using a larger set of exper-
imental variables, asymmetric procedures will show limi-
tations.
RLQ generalizes the concept of symmetric analysis, an

extension of the co-inertia principle for 3-tables, where

each of the three tables plays independently a symmetric
role. As highlighted by Dray and collaborators [19], the
simultaneous analysis of this 3-table scheme is a more
coherent solution. The advantage of RLQ over other
methods such as between-class co-inertia analysis is that
it provides a more consistent analysis framework with a
stronger mathematical background. Other asymmetric
approaches have been proposed in psychometrics such
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as the double constrained correspondence analysis [36]
where the correspondence analysis of the central table
L is constrained by both information on observations
(table R) and variables (table Q). This double constrained
procedure introduces 2 dimensionality constraints. Each
regression step may lead to numerical instability that can
generate poor predictive power. The solution proposed in
RLQ analysis is more satisfying because it has no dimen-
sionality restrictions, providing greater numerical stability
particularly when the number of variables taken into
account is large [18]. In RLQ, the central table is treated by
correspondence analysis, whereas the 2 additional matri-
ces can be analyzed using different schemes depending on
the nature of the descriptive variables. The chemometrics
L-PLSR procedure described by Martens and collabora-
tors [20] follows the same idea with the only noticeable
difference that the central table is treated by princi-
pal component analysis (after initial double-centering
transformation), and not correspondence analysis. As
previously shown, L-PLSR and RLQ are practically com-
parable and show very minor differences. Considering
the different options associated with the analysis of
the 2 marginal tables, and the choice in the scheme of
the central table, this further extends the theoretical
framework of RLQ.
In the scope of the current work, we described three

applications of RLQ for the interpretation of high-
throughput gene expression data, using TFBS, GO and
KEGG pathways annotations as input of the Q matrix.
Other variations around the same principle include
the integration of literature co-occurrence information
(e.g. by extracting information from pubmed), the pres-
ence/absence of microRNA targets [37], as well as more
direct information such the chromosomal location, tissue
expression patterns, etc.
It is worth noting that the transcription factors activ-

ity as assessed by RLQ analysis depends on several
assumptions made for the identification of the puta-
tive TFBSs. This includes the choice of the TFBS
motif database, the length of the promoter region,
the threshold chosen to define the likelihood of the
actual presence of TFBSs, etc. The current method
takes into account the fact that several transcrip-
tion factors can bind to a promoter and interact.
However, more complex phenomena influencing the
action of transcription factors, such as folding of the DNA
promoter region [38], are not modeled in the current
approach.
RLQ analysis is essentially exploratory. However, sev-

eral testing procedures were specifically proposed in the
framework of RLQ [19,23]. Using permutational models,
the link between experimental variables and gene annota-
tions can be tested. These inferential techniques provide
an immediate overview of the nature (positive/negative)

and significance of the relationship between experimental
variables and gene annotations.

Conclusion
RLQ analysis is a new approach to extract and visualize
structures in a microarray dataset by combining exter-
nal information on both columns (experimental variables)
and rows (gene annotations). Biplot representations pro-
vide a unique all-integrated picture of the results, which
allows us to directly relate experimental variables to gene
annotations.
This approach was successfully used to describe the

transcription factor activity associated with the action
of the glucocorticoid MF furoate on the growth of
human fibroblasts. In an integrated manner, RLQ analysis
unveiled distinct mechanisms of action of glucocorticoids,
in agreement with prior existing knowledge from the liter-
ature. The nuclear expression levels of OCT-1 and CREB
confirmed the transcription factor activity predicted by
using RQL analyses, and provide a direct molecular bio-
logical validation of the method.
The set of R functions proposed in the frame of this

work further facilitates the use of RLQ analysis with
regards to transcriptomics data in the light of GO, KEGG
and TFBS information, as exemplified in this study.
Further work is needed to explore the performance of

RLQ in specific cases, such as datasets comprising a larger
set of experimental variables, or variables of heteroge-
neous nature (e.g. mixture of quantitative and qualitative
variables). Computationally, the current implementation
of RLQ allows to analyze efficiently standard gene expres-
sion datasets. However, further optimizations might be
needed in order to deal with even larger highly multivari-
ate datasets such as the ones generated by whole genome
exon arrays.
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