624 research outputs found
Spinning strings and integrable spin chains in the AdS/CFT correspondence
In this introductory review we discuss dynamical tests of the AdS_5 x S^5
string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we
argue that semiclassical string energies yield information on the quantum
spectrum of the string in the limit of large angular momenta on the S^5. The
energies of the folded and circular spinning string solutions rotating on a S^3
within the S^5 are derived, which yield all loop predictions for the dual gauge
theory scaling dimensions. These follow from the eigenvalues of the dilatation
operator of N=4 super Yang-Mills in a minimal SU(2) subsector and we display
its reformulation in terms of a Heisenberg s=1/2 spin chain along with the
coordinate Bethe ansatz for its explicit diagonalization. In order to make
contact to the spinning string energies we then study the thermodynamic limit
of the one-loop gauge theory Bethe equations and demonstrate the matching with
the folded and closed string result at this loop order. Finally the known gauge
theory results at higher-loop orders are reviewed and the associated long-range
spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop
conjecture for the gauge theory Bethe equations. This uncovers discrepancies at
the three-loop order between gauge theory scaling dimensions and string theory
energies and the implications of this are discussed. Along the way we comment
on further developments and generalizations of the subject and point to the
relevant literature.Comment: 40 pages, invited contribution to Living Reviews in Relativity. v2:
improvements in the text and references adde
Novel Solutions of Finite-Density D3/D5 Probe Brane System and Their Implications for Stability
In this article we present a novel set of solutions of the probe brane system
consisting of Nf-D5 probe branes embedded in the near-horizon geometry
generated by Nc-D3 branes, with the D5 worldvolume U(1) gauge fields turned on.
Our system is holographically dual to a supersymmetric defect field theory at
finite density in non-trivial vacua. We find that a large class of vacua turns
out to satisfy a no-force condition, even with supersymmetry explicitly broken
by the finite density; our solutions include configuration in which charge
separates from the horizon and is instead carried by probe branes outside the
horizon. The free energy is lowered in this process. Whether this corresponds
to a genuine instability of the finite-density probe brane system remains to be
seen.Comment: 11 pages, 1 figure
Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.
Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals
Predictive factors for new onset or progression of knee osteoarthritis one year after trauma: MRI follow-up in general practice
Objective: To prospectively evaluate prognostic factors for new onset or progression of degenerative change on follow-up MRI one year after knee trauma and the association with clinical outcome. Methods: Within a prospective observational cohort study in general practice, we studied a subgroup of 117 patients with acute knee trauma (mean age 41 years, 43% women). Degenerative change was scored on MRI at baseline and after one year follow-up. Multivariate logistic regression analysis was performed to evaluate prognostic factors for new onset or progressive degenerative change on follow-up MRI. Association between new or progressive degeneration and clinical outcome after one year was assessed. Results: On follow-up MRI 15% of patients with pre-existing knee osteoarthritis showed progression and 26% of patients demonstrated new degenerative change. The only statistically significant prognostic variable in the multivariate analysis was bone marrow oedema on initial MRI (OR 5.29 (95% CI 1.64-17.1), pβ=β0.005). A significant association between new or progressive degenerative change and clinical outcome was found (pβ=β0.003). Conclusion: Bone marrow oedema on MRI for acute knee injury is strongly predictive of new onset or progression of degenerative change of the femorotibial joint on follow-up MRI one year after trauma, which is reflected in clinical outcome
Characterization of Engineered Actin Binding Proteins That Control Filament Assembly and Structure
Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate.We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs), are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively.From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly
Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study
<p>Abstract</p> <p>Background</p> <p>Previous Magnetic Resonance Imaging (MRI) studies of people with anorexia nervosa (AN) have shown differences in brain structure. This study aimed to provide preliminary extensions of this data by examining how different levels of appetitive restraint impact on brain volume.</p> <p>Methods</p> <p>Voxel based morphometry (VBM), corrected for total intracranial volume, age, BMI, years of education in 14 women with AN (8 RAN and 6 BPAN) and 21 women (HC) was performed. Correlations between brain volume and dietary restraint were done using Statistical Package for the Social Sciences (SPSS).</p> <p>Results</p> <p>Increased right dorsolateral prefrontal cortex (DLPFC) and reduced right anterior insular cortex, bilateral parahippocampal gyrus, left fusiform gyrus, left cerebellum and right posterior cingulate volumes in AN compared to HC. RAN compared to BPAN had reduced left orbitofrontal cortex, right anterior insular cortex, bilateral parahippocampal gyrus and left cerebellum. Age negatively correlated with right DLPFC volume in HC but not in AN; dietary restraint and BMI predicted 57% of variance in right DLPFC volume in AN.</p> <p>Conclusions</p> <p>In AN, brain volume differences were found in appetitive, somatosensory and top-down control brain regions. Differences in regional GMV may be linked to levels of appetitive restraint, but whether they are state or trait is unclear. Nevertheless, these discrete brain volume differences provide candidate brain regions for further structural and functional study in people with eating disorders.</p
Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV
A search for pair-produced charged Higgs bosons is performed with the L3
detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV,
corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a
charm and a strange quark or into a tau lepton and its associated neutrino are
considered. The observed events are consistent with the expectations from
Standard Model background processes. A lower limit of 65.5 GeV on the charged
Higgs mass is derived at 95 % confidence level, independent of the decay
branching ratio Br(H^{+/-} -> tau nu)
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of βs = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60β€pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2β€{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
- β¦