14 research outputs found

    Impact of resilience enhancing programs on youth surviving the Beslan school siege

    Get PDF
    The objective of this study was to evaluate a resilience-enhancing program for youth (mean age = 13.32 years) from Beslan, North Ossetia, in the Russian Federation. The program, offered in the summer of 2006, combined recreation, sport, and psychosocial rehabilitation activities for 94 participants, 46 of who were taken hostage in the 2004 school tragedy and experienced those events first hand. Self-reported resilience, as measured by the CD-RISC, was compared within subjects at the study baseline and at two follow-up assessments: immediately after the program and 6 months later. We also compared changes in resilience levels across groups that differed in their traumatic experiences. The results indicate a significant intra-participant mean increase in resilience at both follow-up assessments, and greater self-reported improvements in resilience processes for participants who experienced more trauma events

    Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future

    Get PDF
    Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are currently the preferred methods of malaria vector control. In many cases, these methods are used together in the same households, especially to suppress transmission in holoendemic and hyperendemic scenarios. Though widespread, there has been limited evidence suggesting that such co-application confers greater protective benefits than either ITNs or IRS when used alone. Since both methods are insecticide-based and intradomicilliary, this article hypothesises that outcomes of their combination would depend on effects of the candidate active ingredients on mosquitoes that enter or those that attempt to enter houses. It is suggested here that enhanced household level protection can be achieved if the ITNs and IRS have divergent yet complementary properties, e.g. highly deterrent IRS compounds coupled with highly toxic ITNs. To ensure that the problem of insecticide resistance is avoided, the ITNs and IRS products should preferably be of different insecticide classes, e.g. pyrethroid-based nets combined with organophosphate or carbamate based IRS. The overall community benefits would however depend also on other factors such as proportion of people covered by the interventions and the behaviour of vector species. This article concludes by emphasizing the need for basic and operational research, including mathematical modelling to evaluate IRS/ITN combinations in comparison to IRS alone or ITNs alone

    A Modified Experimental Hut Design for Studying Responses of Disease-Transmitting Mosquitoes to Indoor Interventions: The Ifakara Experimental Huts

    Get PDF
    Differences between individual human houses can confound results of studies aimed at evaluating indoor vector control interventions such as insecticide treated nets (ITNs) and indoor residual insecticide spraying (IRS). Specially designed and standardised experimental huts have historically provided a solution to this challenge, with an added advantage that they can be fitted with special interception traps to sample entering or exiting mosquitoes. However, many of these experimental hut designs have a number of limitations, for example: 1) inability to sample mosquitoes on all sides of huts, 2) increased likelihood of live mosquitoes flying out of the huts, leaving mainly dead ones, 3) difficulties of cleaning the huts when a new insecticide is to be tested, and 4) the generally small size of the experimental huts, which can misrepresent actual local house sizes or airflow dynamics in the local houses. Here, we describe a modified experimental hut design - The Ifakara Experimental Huts- and explain how these huts can be used to more realistically monitor behavioural and physiological responses of wild, free-flying disease-transmitting mosquitoes, including the African malaria vectors of the species complexes Anopheles gambiae and Anopheles funestus, to indoor vector control-technologies including ITNs and IRS. Important characteristics of the Ifakara experimental huts include: 1) interception traps fitted onto eave spaces and windows, 2) use of eave baffles (panels that direct mosquito movement) to control exit of live mosquitoes through the eave spaces, 3) use of replaceable wall panels and ceilings, which allow safe insecticide disposal and reuse of the huts to test different insecticides in successive periods, 4) the kit format of the huts allowing portability and 5) an improved suite of entomological procedures to maximise data quality

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the <it>An. gambiae </it>complex. <it>Anopheles gambiae </it>is one of four DVS within the <it>An. gambiae </it>complex, the others being <it>An. arabiensis </it>and the coastal <it>An. merus </it>and <it>An. melas</it>. There are a further three, highly anthropophilic DVS in Africa, <it>An. funestus</it>, <it>An. moucheti </it>and <it>An. nili</it>. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.</p> <p>Results</p> <p>A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.</p> <p>Conclusions</p> <p>The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: <it>Anopheles </it>(<it>Cellia</it>) <it>arabiensis</it>, <it>An. </it>(<it>Cel.</it>) <it>funestus*</it>, <it>An. </it>(<it>Cel.</it>) <it>gambiae</it>, <it>An. </it>(<it>Cel.</it>) <it>melas</it>, <it>An. </it>(<it>Cel.</it>) <it>merus</it>, <it>An. </it>(<it>Cel.</it>) <it>moucheti </it>and <it>An. </it>(<it>Cel.</it>) <it>nili*</it>, and in the European and Middle Eastern Region: <it>An. </it>(<it>Anopheles</it>) <it>atroparvus</it>, <it>An. </it>(<it>Ano.</it>) <it>labranchiae</it>, <it>An. </it>(<it>Ano.</it>) <it>messeae</it>, <it>An. </it>(<it>Ano.</it>) <it>sacharovi</it>, <it>An. </it>(<it>Cel.</it>) <it>sergentii </it>and <it>An. </it>(<it>Cel.</it>) <it>superpictus*</it>. These maps are presented alongside a bionomics summary for each species relevant to its control.</p

    Mosquito behavior and vector control.

    No full text
    Effective indoor residual spraying against malaria vectors depends on whether mosquitoes rest indoors (i.e., endophilic behavior). This varies among species and is affected by insecticidal irritancy. Exophilic behavior has evolved in certain populations exposed to prolonged spraying programs. Optimum effectiveness of insecticide-treated nets presumably depends on vectors biting at hours when most people are in bed. Time of biting varies among different malaria vector species, but so far there is inconclusive evidence for these evolving so as to avoid bednets. Use of an untreated net diverts extra biting to someone in the same room who is without a net. Understanding choice of oviposition sites and dispersal behavior is important for the design of successful larval control programs including those using predatory mosquito larvae. Prospects for genetic control by sterile males or genes rendering mosquitoes harmless to humans will depend on competitive mating behavior. These methods are hampered by the immigration of monogamous, already-mated females

    Sampling Adults with Non-attractant Traps

    No full text

    Neuroinflammation and Excitotoxicity in Neurobiology of HIV-1 Infection and AIDS: Targets for Neuroprotection

    No full text

    Dengue viruses &#x2013; an overview

    Get PDF
    Dengue viruses (DENVs) cause the most common arthropod-borne viral disease in man with 50&#x2013;100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF) is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence
    corecore