11 research outputs found

    The effects of customer equity drivers on loyalty across services industries and firms

    Get PDF
    Customer equity drivers (CEDs)—value equity, brand equity, and relationship equity—positively affect loyalty intentions, but this effect varies across industries and firms. We empirically examine potential industry and firm characteristics that explain why the CEDs–loyalty link varies across services industries and firms in the Netherlands. The results show that (1) some previously assumed industry and firm characteristics have moderating effects while others do not and (2) firm-level advertising expenditures constitute the most crucial moderator because they influence all three loyalty strategies (significant for value equity and brand equity; marginally significant for relationship equity), while three industry contexts (i.e., innovative markets, visibility to others, and complexity of purchase decisions) each influence two of the three loyalty strategies. Our results clearly show that specific industry and firm characteristics affect the effectiveness of specific loyalty strategies

    Next-Generation Sequencing in Veterinary Medicine: How Can the Massive Amount of Information Arising from High-Throughput Technologies Improve Diagnosis, Control, and Management of Infectious Diseases?

    No full text
    The development of high-throughput molecular technologies and associated bioinformatics has dramatically changed the capacities of scientists to produce, handle, and analyze large amounts of genomic, transcriptomic, and proteomic data. A clear example of this step-change is represented by the amount of DNA sequence data that can be now produced using next-generation sequencing (NGS) platforms. Similarly, recent improvements in protein and peptide separation efficiencies and highly accurate mass spectrometry have promoted the identification and quantification of proteins in a given sample. These advancements in biotechnology have increasingly been applied to the study of animal infectious diseases and are beginning to revolutionize the way that biological and evolutionary processes can be studied at the molecular level. Studies have demonstrated the value of NGS technologies for molecular characterization, ranging from metagenomic characterization of unknown pathogens or microbial communities to molecular epidemiology and evolution of viral quasispecies. Moreover, high-throughput technologies now allow detailed studies of host-pathogen interactions at the level of their genomes (genomics), transcriptomes (transcriptomics), or proteomes (proteomics). Ultimately, the interaction between pathogen and host biological networks can be questioned by analytically integrating these levels (integrative OMICS and systems biology). The application of high-throughput biotechnology platforms in these fields and their typical low-cost per information content has revolutionized the resolution with which these processes can now be studied

    Lithography

    No full text
    corecore