48 research outputs found

    Calpain-Catalyzed Proteolysis of Human dUTPase Specifically Removes the Nuclear Localization Signal Peptide

    Get PDF
    Calpain proteases drive intracellular signal transduction via specific proteolysis of multiple substrates upon Ca(2+)-induced activation. Recently, dUTPase, an enzyme essential to maintain genomic integrity, was identified as a physiological calpain substrate in Drosophila cells. Here we investigate the potential structural/functional significance of calpain-activated proteolysis of human dUTPase.Limited proteolysis of human dUTPase by mammalian m-calpain was investigated in the presence and absence of cognate ligands of either calpain or dUTPase. Significant proteolysis was observed only in the presence of Ca(II) ions, inducing calpain action. The presence or absence of the dUTP-analogue α,β-imido-dUTP did not show any effect on Ca(2+)-calpain-induced cleavage of human dUTPase. The catalytic rate constant of dUTPase was unaffected by calpain cleavage. Gel electrophoretic analysis showed that Ca(2+)-calpain-induced cleavage of human dUTPase resulted in several distinctly observable dUTPase fragments. Mass spectrometric identification of the calpain-cleaved fragments identified three calpain cleavage sites (between residues (4)SE(5); (7)TP(8); and (31)LS(32)). The cleavage between the (31)LS(32) peptide bond specifically removes the flexible N-terminal nuclear localization signal, indispensable for cognate localization.Results argue for a mechanism where Ca(2+)-calpain may regulate nuclear availability and degradation of dUTPase

    Analysis of the Effects of Polymorphism on Pollen Profilin Structural Functionality and the Generation of Conformational, T- and B-Cell Epitopes

    Get PDF
    An extensive polymorphism analysis of pollen profilin, a fundamental regulator of the actin cytoskeleton dynamics, has been performed with a major focus in 3D-folding maintenance, changes in the 2-D structural elements, surface residues involved in ligands-profilin interactions and functionality, and the generation of conformational and lineal B- and T-cell epitopes variability. Our results revealed that while the general fold is conserved among profilins, substantial structural differences were found, particularly affecting the special distribution and length of different 2-D structural elements (i.e. cysteine residues), characteristic loops and coils, and numerous micro-heterogeneities present in fundamental residues directly involved in the interacting motifs, and to some extension these residues nearby to the ligand-interacting areas. Differential changes as result of polymorphism might contribute to generate functional variability among the plethora of profilin isoforms present in the olive pollen from different genetic background (olive cultivars), and between plant species, since biochemical interacting properties and binding affinities to natural ligands may be affected, particularly the interactions with different actin isoforms and phosphoinositides lipids species. Furthermore, conspicuous variability in lineal and conformational epitopes was found between profilins belonging to the same olive cultivar, and among different cultivars as direct implication of sequences polymorphism. The variability of the residues taking part of IgE-binding epitopes might be the final responsible of the differences in cross-reactivity among olive pollen cultivars, among pollen and plant-derived food allergens, as well as between distantly related pollen species, leading to a variable range of allergy reactions among atopic patients. Identification and analysis of commonly shared and specific epitopes in profilin isoforms is essential to gain knowledge about the interacting surface of these epitopes, and for a better understanding of immune responses, helping design and development of rational and effective immunotherapy strategies for the treatment of allergy diseases. [EN]This study was supported by the following European Regional Development Fund co-financed grants: MCINN BFU 2004-00601/BFI, BFU 2008-00629, BFU2011-22779, CICE (Junta de AndalucĂ­a) P2010-CVI15767, P2010-AGR6274 and P2011-CVI-7487, and by the coordinated project Spain/Germany MEC HA2004-0094. JCJ-L thanks Spanish CSIC and the European Marie Curie research program for his I3P-BPD-CSIC, and PIOF-GA-2011-301550 grants, respectively.Peer reviewe

    X-ray Analysis of Structural Changes Induced by Reduced Nicotinamide Adenine Dinucleotide When Bound to Cysteine-46-Carboxymethylated Liver Alcohol Dehydrogenase

    No full text
    The structure of the complex between Cys-46-carboxymethylated horse liver alcohol dehydrogenase (CM-LADH) and reduced nicotinamide adenine dinucleotide (NADH) has been determined by X-ray analysis. The complex represents NADH binding to the orthorhombic, "open" conformation of the enzyme. Coenzyme binding here induces a local structural change in the peptide loop 293-297, but there is no domain rotation, as observed for the "closed" conformation of the protein. This local movement of a few residues in the loop is sufficient to trap the nicotinamide ring of NADH within the active-site area close to a productive binding position. The carboxymethyl group on the zinc ligand cysteine-46 is oriented between the pyrophosphate bridge of NADH and the guanidinium group of arginine-369 and can occupy this position because the coenzyme binding cleft remains open and unchanged upon coenzyme binding. The zinc coordination sphere is distorted, and the position of the metal atom is shifted 1 A compared to native unliganded LADH. The distance between the zinc ion and the sulfur of the alkylated cysteine residue is of the order of 3 A. Alkylation experiments were performed at 0.15 and 10 mM iodoacetate, and peptide maps were examined. Gentle treatment with reagent yields an enzyme product which is substituted at only one of the two zinc binding sites per subunit of LADH (Cys-46). This enzyme species maintains its structural integrity; it binds coenzyme which induces conformational changes resolved into two steps. Thus, in addition to the orthorhombic complex, a crystalline NADH complex in the closed conformation of CM-LADH was obtained. These crystals showed enzymic activity, and single crystals were analyzed with microspectro-photometric methods. Formation of the stable crystalline abortive complex between CM-LADH-NAD"1" and 4-fran5-(7V,A-dimethylamino)cinnamaldehyde (DACA) could be observed upon addition of excess aldehyde to the closed complex of CM-LADH-NADH. The CM-LADH-NAD+-DACA complex is characterized by an intense absorption band with a at 456 nm which corresponds to a shift in the spectrum of free DACA of approximately 60 nm. At the higher concentration of iodoacetate, three of the cysteine ligands to the second zinc atom (Cys-100, -103, and -111) are alkylated in addition to Cys-46. This enzyme product rapidly denatures and cannot be crystallized under our conditions. This is an experimental indication that the intact noncatalytic zinc binding site contributes to the structural stability of the protein. © 1985, American Chemical Society. All rights reserved
    corecore