87 research outputs found

    Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic)

    Get PDF
    The Carnian Pluvial Episode was a phase of global climatic change and biotic turnover that occurred during the early Late Triassic. In marine sedimentary basins, the arrival of huge amounts of siliciclastic sediments, the establishment of anoxic conditions, and a sudden change of the carbonate factory on platforms marked the Carnian Pluvial Episode. The sedimentary changes are closely associated with abrupt biological turnover among marine and terrestrial groups as, for example, an extinction among ammonoids and conodonts in the ocean, and a turnover of the vertebrate fauna and the flora on land. Multiple negative carbon-isotope excursions were recorded during the Carnian Pluvial Episode in both organic matter and marine carbonates, suggesting repeated injection of 13C-depleted CO2 into the ocean–atmosphere system, but their temporal and causal links with the sedimentological and palaeontological changes are poorly understood. We here review the existing carbon-isotope records and present new data on the carbon-isotope composition of organic carbon in selected sections of the western Tethys realm that record the entire Carnian Pluvial Episode. New ammonoid, conodont and sporomorph biostratigraphic data were collected and coupled to an extensive review of the existing biostratigraphy to constrain the age of the sampled sections. The results provide biostratigraphically constrained composite organic carbon-isotope curves for the Carnian, which sheds light on the temporal and causal links between the main carbon-isotope perturbations, and the distinct environmental and biotic changes that mark the Carnian Pluvial Episode. The carbon-isotope records suggest that a series of carbon-cycle perturbations, possibly recording multiple phases of volcanic activity during the emplacement of the Wrangellia Large Igneous Province, disrupted Carnian environments and ecosystems repeatedly over a remarkably long time interval of about 1 million years

    Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome

    Get PDF
    Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNβ-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNβ and IFNβ-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1β. Transcription of the Il1b gene was markedly impaired in TLR2−/− and MyD88−/− BMDM, whereas mature and secreted IL-1β was massively reduced in NALP3−/− BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNβ and IL-1β by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity

    Evolution of a Core Gene Network for Skeletogenesis in Chordates

    Get PDF
    The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1–3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and placoid scales evolved from a homologous developmental module

    Response of Sunflower (Helianthus annuus L.) Leaf Surface Defenses to Exogenous Methyl Jasmonate

    Get PDF
    Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness

    Additive Pressures of Elevated Sea Surface Temperatures and Herbicides on Symbiont-Bearing Foraminifera

    Get PDF
    Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII) inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte) of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F′m), while elevated temperatures (>30°C, only 2°C above current average summer temperatures) were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (Fv/Fm), interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced Fv/Fm and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥1 µg L−1). The mixture toxicity model of Independent Action (IA) described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures

    Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function

    Get PDF
    Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design

    Global Analysis of Extracytoplasmic Stress Signaling in Escherichia coli

    Get PDF
    The Bae, Cpx, Psp, Rcs, and σE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response
    corecore