120 research outputs found

    Generalized information reuse for optimization under uncertainty with non-sample average estimators

    Get PDF
    In optimization under uncertainty for engineering design, the behavior of the system outputs due to uncertain inputs needs to be quantified at each optimization iteration, but this can be computationally expensive. Multi-fidelity techniques can significantly reduce the computational cost of Monte Carlo sampling methods for quantifying the effect of uncertain inputs, but existing multi-fidelity techniques in this context apply only to Monte Carlo estimators that can be expressed as a sample average, such as estimators of statistical moments. Information reuse is a particular multi-fidelity method that treats previous optimization iterations as lower-fidelity models. This work generalizes information reuse to be applicable to quantities with non-sample average estimators. The extension makes use of bootstrapping to estimate the error of estimators and the covariance between estimators at different fidelities. Specifically, the horsetail matching metric and quantile function are considered as quantities whose estimators are not sample-averages. In an optimization under uncertainty for an acoustic horn design problem, generalized information reuse demonstrated computational savings of over 60% compared to regular Monte Carlo sampling

    Characterization of the Biosynthesis, Processing and Kinetic Mechanism of Action of the Enzyme Deficient in Mucopolysaccharidosis IIIC

    Get PDF
    Heparin acetyl-CoA:alpha-glucosaminide N-acetyltransferase (N-acetyltransferase, EC 2.3.1.78) is an integral lysosomal membrane protein containing 11 transmembrane domains, encoded by the HGSNAT gene. Deficiencies of N-acetyltransferase lead to mucopolysaccharidosis IIIC. We demonstrate that contrary to a previous report, the N-acetyltransferase signal peptide is co-translationally cleaved and that this event is required for its intracellular transport to the lysosome. While we confirm that the N-acetyltransferase precursor polypeptide is processed in the lysosome into a small amino-terminal alpha- and a larger ß- chain, we further characterize this event by identifying the mature amino-terminus of each chain. We also demonstrate this processing step(s) is not, as previously reported, needed to produce a functional transferase, i.e., the precursor is active. We next optimize the biochemical assay procedure so that it remains linear as N-acetyltransferase is purified or protein-extracts containing N-acetyltransferase are diluted, by the inclusion of negatively charged lipids. We then use this assay to demonstrate that the purified single N-acetyltransferase protein is both necessary and sufficient to express transferase activity, and that N-acetyltransferase functions as a monomer. Finally, the kinetic mechanism of action of purified N-acetyltransferase was evaluated and found to be a random sequential mechanism involving the formation of a ternary complex with its two substrates; i.e., N-acetyltransferase does not operate through a ping-pong mechanism as previously reported. We confirm this conclusion by demonstrating experimentally that no acetylated enzyme intermediate is formed during the reaction

    A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Get PDF
    BACKGROUND: The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA) sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. RESULTS: The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order) and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology reflects the true organismal relationships. CONCLUSION: In disclosing a sister relationship between the Mesostigmatales and Chlorokybales, our study resolves the long-standing debate about the nature of the unicellular flagellated ancestors of land plants and alters significantly our concepts regarding the evolution of streptophyte algae. Moreover, in predicting a richer chloroplast gene repertoire than previously inferred for the common ancestor of all streptophytes, our study has contributed to a better understanding of chloroplast genome evolution in the Viridiplantae

    Structure of the dimeric N-glycosylated form of fungal β-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungal β-<it>N</it>-acetylhexosaminidases catalyze the hydrolysis of chitobiose into its constituent monosaccharides. These enzymes are physiologically important during the life cycle of the fungus for the formation of septa, germ tubes and fruit-bodies. Crystal structures are known for two monomeric bacterial enzymes and the dimeric human lysosomal β-<it>N</it>-acetylhexosaminidase. The fungal β-<it>N</it>-acetylhexosaminidases are robust enzymes commonly used in chemoenzymatic syntheses of oligosaccharides. The enzyme from <it>Aspergillus oryzae </it>was purified and its sequence was determined.</p> <p>Results</p> <p>The complete primary structure of the fungal β-<it>N</it>-acetylhexosaminidase from <it>Aspergillus oryzae </it>CCF1066 was used to construct molecular models of the catalytic subunit of the enzyme, the enzyme dimer, and the <it>N</it>-glycosylated dimer. Experimental data were obtained from infrared and Raman spectroscopy, and biochemical studies of the native and deglycosylated enzyme, and are in good agreement with the models. Enzyme deglycosylated under native conditions displays identical kinetic parameters but is significantly less stable in acidic conditions, consistent with model predictions. The molecular model of the deglycosylated enzyme was solvated and a molecular dynamics simulation was run over 20 ns. The molecular model is able to bind the natural substrate – chitobiose with a stable value of binding energy during the molecular dynamics simulation.</p> <p>Conclusion</p> <p>Whereas the intracellular bacterial β-<it>N</it>-acetylhexosaminidases are monomeric, the extracellular secreted enzymes of fungi and humans occur as dimers. Dimerization of the fungal β-<it>N</it>-acetylhexosaminidase appears to be a reversible process that is strictly pH dependent. Oligosaccharide moieties may also participate in the dimerization process that might represent a unique feature of the exclusively extracellular enzymes. Deglycosylation had only limited effect on enzyme activity, but it significantly affected enzyme stability in acidic conditions. Dimerization and <it>N</it>-glycosylation are the enzyme's strategy for catalytic subunit stabilization. The disulfide bridge that connects Cys<sup>448 </sup>with Cys<sup>483 </sup>stabilizes a hinge region in a flexible loop close to the active site, which is an exclusive feature of the fungal enzymes, neither present in bacterial nor mammalian structures. This loop may play the role of a substrate binding site lid, anchored by a disulphide bridge that prevents the substrate binding site from being influenced by the flexible motion of the loop.</p

    Audiovisual Non-Verbal Dynamic Faces Elicit Converging fMRI and ERP Responses

    Get PDF
    In an everyday social interaction we automatically integrate another’s facial movements and vocalizations, be they linguistic or otherwise. This requires audiovisual integration of a continual barrage of sensory input—a phenomenon previously well-studied with human audiovisual speech, but not with non-verbal vocalizations. Using both fMRI and ERPs, we assessed neural activity to viewing and listening to an animated female face producing non-verbal, human vocalizations (i.e. coughing, sneezing) under audio-only (AUD), visual-only (VIS) and audiovisual (AV) stimulus conditions, alternating with Rest (R). Underadditive effects occurred in regions dominant for sensory processing, which showed AV activation greater than the dominant modality alone. Right posterior temporal and parietal regions showed an AV maximum in which AV activation was greater than either modality alone, but not greater than the sum of the unisensory conditions. Other frontal and parietal regions showed Common-activation in which AV activation was the same as one or both unisensory conditions. ERP data showed an early superadditive effect (AV > AUD + VIS, no rest), mid-range underadditive effects for auditory N140 and face-sensitive N170, and late AV maximum and common-activation effects. Based on convergence between fMRI and ERP data, we propose a mechanism where a multisensory stimulus may be signaled or facilitated as early as 60 ms and facilitated in sensory-specific regions by increasing processing speed (at N170) and efficiency (decreasing amplitude in auditory and face-sensitive cortical activation and ERPs). Finally, higher-order processes are also altered, but in a more complex fashion

    Temperate phages enhance pathogen fitness in chronic lung infection

    Get PDF
    The Liverpool Epidemic Strain (LES) is a polylysogenic, transmissible strain of Pseudomonas aeruginosa, capable of superinfecting existing P. aeruginosa respiratory infections in individuals with cystic fibrosis (CF). The LES phages are highly active in the CF lung and may have a role in the competitiveness of the LES in vivo. In this study, we tested this by competing isogenic PAO1 strains that differed only by the presence or absence of LES prophages in a rat model of chronic lung infection. Lysogens invaded phage-susceptible populations, both in head-to-head competition and when invading from rare, in the spatially structured, heterogeneous lung environment. Appreciable densities of free phages in lung tissue confirmed active phage lysis in vivo. Moreover, we observed lysogenic conversion of the phage-susceptible competitor. These results suggest that temperate phages may have an important role in the competitiveness of the LES in chronic lung infection by acting as anti-competitor weapons

    In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation

    Get PDF
    Background. In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by studying this organism, we may gain insight into adaptations to the aerial environment. Principal Findings. In this study, we characterized the antenna protein multigene family in Physcomitrella patens, by sequence analysis as well as biochemical and functional investigations. Sequence identification and analysis showed that some antenna polypeptides, such as Lhcb3 and Lhcb6, are present only in land organisms, suggesting they play a role in adaptation to the sub-aerial environment. Our functional analysis which showed that photo-protective mechanisms in Physcomitrella patens are very similar to those in seed plants fits with this hypothesis. In particular, Physcomitrella patens also activates Non Photochemical Quenching upon illumination, consistent with the detection of an ortholog of the PsbS protein. As a further adaptation to terrestrial conditions, the content of Photosystem I low energy absorbing chlorophylls also increased, as demonstrated by differences in Lhca3 and Lhca4 polypeptide sequences, in vitro reconstitution experiments and low temperature fluorescence spectra. Conclusions. This study highlights the role of Lhc family members in environmental adaptation and allowed proteins associated with mechanisms of stress resistance to be identified within this large family

    Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model

    Get PDF
    ABSTRACT: BACKGROUND: Simulation models of influenza spread play an important role for pandemic preparedness. However, as the world has not faced a severe pandemic for decades, except the rather mild H1N1 one in 2009, pandemic influenza models are inherently hypothetical and validation is, thus, difficult. We aim at reconstructing a recent seasonal influenza epidemic that occurred in Switzerland and deem this to be a promising validation strategy for models of influenza spread. METHODS: We present a spatially explicit, individual-based simulation model of influenza spread. The simulation model bases upon (i) simulated human travel data, (ii) data on human contact patterns and (iii) empirical knowledge on the epidemiology of influenza. For model validation we compare the simulation outcomes with empirical knowledge regarding (i) the shape of the epidemic curve, overall infection rate and reproduction number, (ii) age-dependent infection rates and time of infection, (iii) spatial patterns. RESULTS: The simulation model is capable of reproducing the shape of the 2003/2004 H3N2 epidemic curve of Switzerland and generates an overall infection rate (14.9 percent) and reproduction numbers (between 1.2 and 1.3), which are realistic for seasonal influenza epidemics. Age and spatial patterns observed in empirical data are also reflected by the model: Highest infection rates are in children between 5 and 14 and the disease spreads along the main transport axes from west to east. CONCLUSIONS: We show that finding evidence for the validity of simulation models of influenza spread by challenging them with seasonal influenza outbreak data is possible and promising. Simulation models for pandemic spread gain more credibility if they are able to reproduce seasonal influenza outbreaks. For more robust modelling of seasonal influenza, serological data complementing sentinel information would be beneficia
    corecore