4 research outputs found

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Wnt Signaling in Vertebrate Neural Development and Function

    No full text
    Members of the Wnt family of secreted signaling proteins influence many aspects of neural development and function. Wnts are required from neural induction and axis formation to axon guidance and synapse development, and even help modulate synapse activity. Wnt proteins activate a variety of downstream signaling pathways and can induce a similar variety of cellular responses, including gene transcription changes and cytoskeletal rearrangements. This review provides an introduction to Wnt signaling pathways and discusses current research on their roles in vertebrate neural development and function
    corecore