14 research outputs found
Multidisciplinary care of obese children and adolescents for one year reduces ectopic fat content in liver and skeletal muscle
Genome-wide associations for birth weight and correlations with adult disease
Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW ( < 5 × 10). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure ( = -0.22, = 5.5 × 10), T2D ( = -0.27, = 1.1 × 10) and coronary artery disease ( = -0.30, = 6.5 × 10). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions ( = 1.9 × 10). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated
Genome-wide associations for birth weight and correlations with adult disease
Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P < 5 × 10−8). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (Rg = −0.22, P = 5.5 × 10−13), T2D (Rg = −0.27, P = 1.1 × 10−6) and coronary artery disease (Rg = −0.30, P = 6.5 × 10−9). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P = 1.9 × 10−4). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated
Abdominal adiposity and cardiometabolic risk factors in children and adolescents: a Mendelian randomization analysis
Background
Mendelian randomization studies in adults suggest that abdominal adiposity is causally associated with increased risk of type 2 diabetes and coronary artery disease in adults, but its causal effect on cardiometabolic risk in children remains unclear.
Objective
We aimed to study the causal relation of abdominal adiposity with cardiometabolic risk factors in children by applying Mendelian randomization.
Methods
We constructed a genetic risk score (GRS) using variants previously associated with waist-to-hip ratio adjusted for BMI (WHRadjBMI) and examined its associations with cardiometabolic factors by linear regression and Mendelian randomization in a meta-analysis of 6 cohorts, including 9895 European children and adolescents aged 3–17 y.
Results
WHRadjBMI GRS was associated with higher WHRadjBMI (β = 0.021 SD/allele; 95% CI: 0.016, 0.026 SD/allele; P = 3 × 10−15) and with unfavorable concentrations of blood lipids (higher LDL cholesterol: β = 0.006 SD/allele; 95% CI: 0.001, 0.011 SD/allele; P = 0.025; lower HDL cholesterol: β = −0.007 SD/allele; 95% CI: −0.012, −0.002 SD/allele; P = 0.009; higher triglycerides: β = 0.007 SD/allele; 95% CI: 0.002, 0.012 SD/allele; P = 0.006). No differences were detected between prepubertal and pubertal/postpubertal children. The WHRadjBMI GRS had a stronger association with fasting insulin in children and adolescents with overweight/obesity (β = 0.016 SD/allele; 95% CI: 0.001, 0.032 SD/allele; P = 0.037) than in those with normal weight (β = −0.002 SD/allele; 95% CI: −0.010, 0.006 SD/allele; P = 0.605) (P for difference = 0.034). In a 2-stage least-squares regression analysis, each genetically instrumented 1-SD increase in WHRadjBMI increased circulating triglycerides by 0.17 mmol/L (0.35 SD, P = 0.040), suggesting that the relation between abdominal adiposity and circulating triglycerides may be causal.
Conclusions
Abdominal adiposity may have a causal, unfavorable effect on plasma triglycerides and potentially other cardiometabolic risk factors starting in childhood. The results highlight the importance of early weight management through healthy dietary habits and physically active lifestyle among children with a tendency for abdominal adiposity.final draftpeerReviewe
Obesity treatment effect in danish children and adolescents carrying melanocortin-4 receptor mutations
1H-MRS Measured Ectopic Fat in Liver and Muscle in Danish Lean and Obese Children and Adolescents
Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans
Microbiota transplantation to germ-free animals is a powerful method to study involvement of gut microbes in the aetiology of metabolic syndrome. Owing to large interpersonal variability in gut microbiota, studies with broad coverage of donors are needed to elucidate the establishment of human-derived microbiotas in mice, factors affecting this process and resulting impact on metabolic health. We thus transplanted faecal microbiotas from humans (16 obese and 16 controls) separately into 64 germ-free Swiss Webster mice caged in pairs within four isolators, with two isolators assigned to each phenotype, thereby allowing us to explore the extent of microbial spread between cages in a well-controlled environment. Despite high group-wise similarity between obese and control human microbiotas, transplanted mice in the four isolators developed distinct gut bacterial composition and activity, body mass gain, and insulin resistance. Spread of microbes between cages within isolators interacted with establishment of the transplanted microbiotas in mice, and contributed to the transmission of metabolic phenotypes. Our findings highlight the impact of donor variability and reveal that inter-individual spread of microbes contributes to the development of metabolic traits. This is of major importance for design of animal studies, and indicates that environmental transfer of microbes between individuals may affect host metabolic traits
