15 research outputs found

    Interactions between nematodes and their microbial enemies in coastal sand dunes

    No full text
    European foredunes are almost exclusively colonised by Ammophila arenaria, and both the natural succession and the die-out of this plant have been linked to populations of plant-parasitic nematodes (PPN). The overarching aim of this study was to investigate top-down control processes of PPN in these natural ecosystems through comparative analyses of the diversity and dynamics of PPN and their microbial enemies. Our specific aims were, first, to identify and quantify PPN microbial enemies in European sand dunes; second, to assess their life history traits, their spatial and temporal variation in these ecosystems, and third, to evaluate their control potential of PPN populations. This was done by seasonal sampling of a range of sites and making observations on both the nematode and the microbial enemy communities in rhizosphere sand. Nine different nematode microbial enemies belonging to different functional groups were detected in European sand dunes. Their high diversity in these low productivity ecosystems could both result from or lead to the lack of dominance of a particular nematode genus. The distribution of microbial enemies was spatially and temporally variable, both among and within sampling sites. Obligate parasites, either with low host-specificity or having the ability to form an environmentally resistant propagule, are favoured in these ecosystems and are more frequent and abundant than facultative parasites. Three microbial enemies correlated, either positively or negatively, with PPN population size: Catenaria spp., Hirsutella rhossiliensis and Pasteuria penetrans. Microbial-enemy supported links in the food-web may be involved in the control of PPN populations through indirect effects. The endospore-forming P. penetrans was the most successful top-down control agent, and was implicated in the direct control of Meloidogyne spp. and indirect facilitation of Pratylenchus spp. Overall, our findings suggest strong and diverse top-down control effects on the nematode community in these natural ecosystems.Peer reviewe

    Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges

    Get PDF
    Invasive plants generally have fewer aboveground pathogens and viruses in their introduced range than in their natural range, and they also have fewer pathogens than do similar plant species native to the introduced range. However, although plant abundance is strongly controlled by root herbivores and soil pathogens, there is very little knowledge on how invasive plants escape from belowground enemies. We therefore investigated if the general pattern for aboveground pathogens also applies to root-feeding nematodes and used the natural foredune grass Ammophila arenariaas a model. In the late 1800s, the European A. arenariawas introduced into southeast Australia (Tasmania), New Zealand, South Africa, and the west coast of the USA to be used for sand stabilization. In most of these regions, it has become a threat to native vegetation, because its excessive capacity to stabilize wind-blown sand has changed the geomorphology of coastal dunes. In stable dunes of most introduced regions, A. arenaria is more abundant and persists longer than in stabilized dunes of the natural range. We collected soil and root samples and used additional literature data to quantify the taxon richness of root-feeding nematodes on A.?arenaria in its natural range and collected samples from the four major regions where it has been introduced. In most introduced regions A. arenaria did not have fewer root-feeding nematode taxa than the average number in its natural range, and native plant species did not have more nematode taxa than the introduced species. However, in the introduced range native plants had more feeding-specialist nematode taxa than A. arenaria and major feeding specialists (the sedentary endoparasitic cyst and root knot nematodes) were not found on A. arenaria in the southern hemisphere. We conclude that invasiveness of A. arenaria correlates with escape from feeding specialist nematodes, so that the pattern of escape from root-feeding nematodes is more alike escape from aboveground insect herbivores than escape from aboveground pathogens and viruses. In the natural range of A. arenaria, the number of specialist-feeding nematode taxa declines towards the margins. Growth experiments are needed to determine the relationship between nematode taxon diversity, abundance, and invasiveness of A. arenaria. [KEYWORDS: Ammophila arenaria ; Ammophila breviligulata ; biotic resistance hypothesis ; enemy escape hypothesis ; feeding specialist ; invasive plant ; root herbivore ; soil pathogen]

    Evidence of population differentiation in the dune grass Ammophila arenaria and its associated root-feeding nematodes

    No full text
    The interactions between herbivores and their host plants determine, to a great extent, the formation, structure and sustainability of terrestrial communities. The selection pressures that herbivores exert on plants and vice versa might vary geographically, leading eventually to population differentiation and local adaptation. In order to test whether there was reciprocal population differentiation among plants and belowground herbivores, we performed a cross-inoculation experiment using combinations of species and populations of root-feeders belonging to the genus Pratylenchus and the dune grass Ammophila arenaria from different geographic origins. Plant and herbivore responses in terms of growth and multiplication, respectively, were assessed at the end of the experiment. The 16 plant-herbivore combinations tested showed a high variation in the outcome of the interaction and revealed population differentiation in the responses of both, the host plant and the root-herbivores. The outcome in plant and herbivore performance was strongly case-dependent and for the sympatric combinations tested, support for local adaptation was not found. Nonetheless, the variation in plant-herbivore responses to experimental conditions highlights the plasticity of the interaction and may be pointing at spatial structuring in belowground plant-herbivore interactions
    corecore