1,825 research outputs found

    Gender Specific Brood Cells in the Solitary Bee Colletes halophilus (Hymenoptera; Colletidae)

    Get PDF
    We studied the reproductive behaviour of the solitary bee Colletes halophilus based on the variation in cell size, larval food amount and larval sex in relation to the sexual size dimorphism in this bee. Brood cells with female larvae are larger and contain more larval food than cells with males. Occasionally males are reared in female-sized cells. We conclude that a female C. halophilus in principal anticipates the sex of her offspring at the moment brood cell construction is started. Additionally a female is able to ‘change her mind’ about the sex of her offspring during a single brood cell cycle. We present a model that can predict the sex of the larvae in an early stage of development

    Shifting Global Invasive Potential of European Plants with Climate Change

    Get PDF
    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species

    Theoretical Aspects of Particle Production

    Get PDF
    These lectures describe some of the latest data on particle production in high-energy collisions and compare them with theoretical calculations and models based on QCD. The main topics covered are: fragmentation functions and factorization, small-x fragmentation, hadronization models, differences between quark and gluon fragmentation, current and target fragmentation in deep inelastic scattering, and heavy quark fragmentation.Comment: 26 pages, 27 figures. Lectures at International Summer School on Particle Production Spanning MeV and TeV Energies, Nijmegen, The Netherlands, August 199

    Conceptualising production, productivity and technology in pharmacy practice: a novel framework for policy, education and research.

    Get PDF
    CONTEXT AND BACKGROUND: People and health systems worldwide face serious challenges due to shifting disease demographics, rising population demands and weaknesses in healthcare provision, including capacity shortages and lack of impact of healthcare services. These multiple challenges, linked with the global push to achieve universal health coverage, have made apparent the importance of investing in workforce development to improve population health and economic well-being. In relation to medicines, health systems face challenges in terms of access to needed medicines, optimising medicines use and reducing risk. In 2017, the International Pharmaceutical Federation (FIP) published global policy on workforce development ('the Nanjing Statements') that describe an envisioned future for professional education and training. The documents make clear that expanding the pharmacy workforce benefits patients, and continually improving education and training produces better clinical outcomes. AIMS AND PURPOSE: The opportunities for harnessing new technologies in pharmacy practice have been relatively ignored. This paper presents a conceptual framework for analysing production methods, productivity and technology in pharmacy practice that differentiates between dispensing and pharmaceutical care services. We outline a framework that may be employed to study the relationship between pharmacy practice and productivity, shaped by educational and technological inputs. METHOD AND RESULTS: The analysis is performed from the point of view of health systems economics. In relation to pharmaceutical care (patient-oriented practice), pharmacists are service providers; however, their primary purpose is not to deliver consultations, but to maximise the quantum of health gain they secure. Our analysis demonstrates that 'technology shock' is clearly beneficial compared with orthodox notions of productivity or incremental gain implementations. Additionally, the whole process of providing professional services using 'pharmaceutical care technologies' is governed by local institutional frames, suggesting that activities may be structured differently in different places and countries. DISCUSSION AND CONCLUSION: Addressing problems with medication use with the development of a pharmaceutical workforce that is sufficient in quantity and competence is a long-term issue. As a result of this analysis, there emerges a challenge about the profession's relationship with existing and emerging technical innovations. Our novel framework is designed to facilitate policy, education and research by providing an analytical approach to service delivery. By using this approach, the profession could develop examples of good practice in both developed and developing countries worldwide

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients

    Does Medical Students' Preference of Test Format (Computer-based vs. Paper-based) have an Influence on Performance?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer-based examinations (CBE) ensure higher efficiency with respect to producibility and assessment compared to paper-based examinations (PBE). However, students often have objections against CBE and are afraid of getting poorer results in a CBE.</p> <p>The aims of this study were (1) to assess the readiness and the objections of students to a CBE vs. PBE (2) to examine the acceptance and satisfaction with the CBE on a voluntary basis, and (3) to compare the results of the examinations, which were conducted in different formats.</p> <p>Methods</p> <p>Fifth year medical students were introduced to an examination-player and were free to choose their format for the test. The reason behind the choice of the format as well as the satisfaction with the choice was evaluated after the test with a questionnaire. Additionally, the expected and achieved examination results were measured.</p> <p>Results</p> <p>Out of 98 students, 36 voluntarily chose a CBE (37%), 62 students chose a PBE (63%). Both groups did not differ concerning sex, computer-experience, their achieved examination results of the test, and their satisfaction with the chosen format. Reasons for the students' objections against CBE include the possibility for outlines or written notices, a better overview, additional noise from the keyboard or missing habits normally present in a paper based exam. The students with the CBE tended to judge their examination to be more clear and understandable. Moreover, they saw their results to be independent of the format.</p> <p>Conclusions</p> <p>Voluntary computer-based examinations lead to equal test scores compared to a paper-based format.</p

    Species' geographic distributions through time: Playing catchup with changing climates

    Get PDF
    This is the author's accepted manuscript.Species’ ranges are often treated as a rather fixed characteristic, rather than a fluid, ever-changing manifestation of their ecological requirements and dispersal abilities. Paleontologists generally have had a more flexible point of view on this issue than neontologists, but each perspective can improve by appreciating the other. Here, we provide an overview of paleontological and neontological perspectives on species’ geographic distributions, focusing on what can be learned about historical variations in distributions. The cross-disciplinary view, we hope, offers some novel perspectives on species-level biogeography

    Alien Invasive Slider Turtle in Unpredicted Habitat: A Matter of Niche Shift or of Predictors Studied?

    Get PDF
    BACKGROUND: Species Distribution Models (SDMs) aim on the characterization of a species' ecological niche and project it into geographic space. The result is a map of the species' potential distribution, which is, for instance, helpful to predict the capability of alien invasive species. With regard to alien invasive species, recently several authors observed a mismatch between potential distributions of native and invasive ranges derived from SDMs and, as an explanation, ecological niche shift during biological invasion has been suggested. We studied the physiologically well known Slider turtle from North America which today is widely distributed over the globe and address the issue of ecological niche shift versus choice of ecological predictors used for model building, i.e., by deriving SDMs using multiple sets of climatic predictor. PRINCIPAL FINDINGS: In one SDM, predictors were used aiming to mirror the physiological limits of the Slider turtle. It was compared to numerous other models based on various sets of ecological predictors or predictors aiming at comprehensiveness. The SDM focusing on the study species' physiological limits depicts the target species' worldwide potential distribution better than any of the other approaches. CONCLUSION: These results suggest that a natural history-driven understanding is crucial in developing statistical models of ecological niches (as SDMs) while "comprehensive" or "standard" sets of ecological predictors may be of limited use

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)
    corecore