241 research outputs found

    GPs' use of problem solving therapy for depression: a qualitative study of barriers to and enablers of evidence based care

    Get PDF
    BACKGROUND: Depression is a major health concern, predominantly treated by general practitioners (GPs). Problem solving therapy (PST) is recognised as an effective treatment for depression that is not widely used by GPs. This research aims to explore barriers and enablers that may influence GPs use of this treatment. METHOD: Qualitative methodology was used including individual and focus group interviews of GPs, PST experts and consumers. Analysis was undertaken using the Theory of Planned Behaviour (TPB) as a framework. RESULTS: A spectrum of potential influences, on GPs' use of PST emerged. Both barriers and enablers were identified. PST was perceived as being close to current practice approaches and potentially beneficial to both doctor and patient. In addition to a broadly positive attitude to PST, expressed by those with previous experience of its use, potential solutions to perceived barriers emerged. By contrast some GPs expressed fear that the use of PST would result in loss of doctor control of consultations and associated potential adverse patient outcomes. Patient expectations, which emerged as not always coinciding with GPs' perception of those expectations, were identified as a potential influence on GPs' decision concerning adoption of PST. In addition specific factors, including GP skill and confidence, consultation time constraints and technical issues related to PST were noted as potential concerns. CONCLUSION: This research contributes to our knowledge of the factors that may influence GPs' decisions regarding use of PST as a treatment for depression. It recognises both barriers and enablers. It suggests that for many GPs, PST is viewed in a positive light, providing encouragement to those seeking to increase the provision of PST by GPs. In identifying a number of potential barriers, along with associated options to address many of these barriers, it provides insights which may assist in the planning of GP training in PST

    MiR-155 Induction by F. novicida but Not the Virulent F. tularensis Results in SHIP Down-Regulation and Enhanced Pro-Inflammatory Cytokine Response

    Get PDF
    The intracellular Gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3′UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella

    Evolution and Dynamics of Regulatory Architectures Controlling Polymyxin B Resistance in Enteric Bacteria

    Get PDF
    Complex genetic networks consist of structural modules that determine the levels and timing of a cellular response. While the functional properties of the regulatory architectures that make up these modules have been extensively studied, the evolutionary history of regulatory architectures has remained largely unexplored. Here, we investigate the transition between direct and indirect regulatory pathways governing inducible resistance to the antibiotic polymyxin B in enteric bacteria. We identify a novel regulatory architecture—designated feedforward connector loop—that relies on a regulatory protein that connects signal transduction systems post-translationally, allowing one system to respond to a signal activating another system. The feedforward connector loop is characterized by rapid activation, slow deactivation, and elevated mRNA expression levels in comparison with the direct regulation circuit. Our results suggest that, both functionally and evolutionarily, the feedforward connector loop is the transitional stage between direct transcriptional control and indirect regulation

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    A systematic review of complex system interventions designed to increase recovery from depression in primary care

    Get PDF
    BACKGROUND: Primary care is being encouraged to implement multiprofessional, system level, chronic illness management approaches to depression. We undertook this study to identify and assess the quality of RCTs testing system level depression management interventions in primary care and to determine whether these interventions improve recovery. METHOD: Searches of Medline and Cochrane Controlled Register of Trials. 'System level' interventions included: multi-professional approach, enhanced inter-professional communication, scheduled patient follow-up, structured management plan. RESULTS: 11 trials met all inclusion criteria. 10 were undertaken in the USA. Most focussed on antidepressant compliance. Quality of reporting assessed using CONSORT criteria was poor. Eight trials reported an increase in the proportion of patients recovered in favour of the intervention group, yet did not account for attrition rates ranging from 5 to 50%. CONCLUSION: System level interventions implemented in the USA with patients willing to take anti-depressant medication leads to a modest increase in recovery from depression. The relevance of these interventions to countries with strong primary care systems requires testing in a randomised controlled trial

    The Cues and Care Trial: A randomized controlled trial of an intervention to reduce maternal anxiety and improve developmental outcomes in very low birthweight infants

    Get PDF
    Abstract Background Very low birthweight infants are at risk for deficits in cognitive and language development, as well as attention and behaviour problems. Maternal sensitive behaviour (i.e. awareness of infant cues and appropriate responsiveness to those cues) in interaction with her very low birthweight infant is associated with better outcomes in these domains; however, maternal anxiety interferes with the mother's ability to interact sensitively with her very low birthweight infant. There is a need for brief, cost-effective and timely interventions that address both maternal psychological distress and interactive behaviour. The Cues and Care trial is a randomized controlled trial of an intervention designed to reduce maternal anxiety and promote sensitive interaction in mothers of very low birthweight infants. Methods and design Mothers of singleton infants born at weights below 1500 g are recruited in the neonatal intensive care units of 2 tertiary care hospitals, and are randomly assigned to the experimental (Cues) intervention or to an attention control (Care) condition. The Cues intervention teaches mothers to attend to their own physiological, cognitive, and emotional cues that signal anxiety and worry, and to use cognitive-behavioural strategies to reduce distress. Mothers are also taught to understand infant cues and to respond sensitively to those cues. Mothers in the Care group receive general information about infant care. Both groups have 6 contacts with a trained intervener; 5 of the 6 sessions take place during the infant's hospitalization, and the sixth contact occurs after discharge, in the participant mother's home. The primary outcome is maternal symptoms of anxiety, assessed via self-report questionnaire immediately post-intervention. Secondary outcomes include maternal sensitive behaviour, maternal symptoms of posttraumatic stress, and infant development at 6 months corrected age. Discussion The Cues and Care trial will provide important information on the efficacy of a brief, skills-based intervention to reduce anxiety and increase sensitivity in mothers of very low birthweight infants. A brief intervention of this nature may be more readily implemented as part of standard neonatal intensive care than broad-based, multi-component interventions. By intervening early, we aim to optimize developmental outcomes in these high risk infants. Trial Registration Current Controlled Trials ISRCTN00918472 The Cues and Care Trial: A randomized controlled trial of an intervention to reduce maternal anxiety and improve developmental outcomes in very low birthweight infant

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content

    Feedback Inhibition in the PhoQ/PhoP Signaling System by a Membrane Peptide

    Get PDF
    The PhoQ/PhoP signaling system responds to low magnesium and the presence of certain cationic antimicrobial peptides. It regulates genes important for growth under these conditions, as well as additional genes important for virulence in many gram-negative pathogens. PhoQ is a sensor kinase that phosphorylates and activates the transcription factor PhoP. Since feedback inhibition is a common theme in stress-response circuits, we hypothesized that some members of the PhoP regulon may play such a role in the PhoQ/PhoP pathway. We therefore screened for PhoP-regulated genes that mediate feedback in this system. We found that deletion of mgrB (yobG), which encodes a 47 amino acid peptide, results in a potent increase in PhoP-regulated transcription. In addition, over-expression of mgrB decreased transcription at both high and low concentrations of magnesium. Localization and bacterial two-hybrid studies suggest that MgrB resides in the inner-membrane and interacts directly with PhoQ. We further show that MgrB homologs from Salmonella typhimurium and Yersinia pestis also repress PhoP-regulated transcription in these organisms. In cell regulatory circuits, feedback has been associated with modulating the induction kinetics and/or the cell-to-cell variability in response to stimulus. Interestingly, we found that elimination of MgrB-mediated feedback did not have a significant effect on the kinetics of reporter protein production and did not decrease the variability in expression among cells. Our results indicate MgrB is a broadly conserved membrane peptide that is a critical mediator of negative feedback in the PhoQ/PhoP circuit. This new regulator may function as a point of control that integrates additional input signals to modulate the activity of this important signaling system

    Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia

    Get PDF
    Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. Copyright
    • …
    corecore