113 research outputs found
Dopamine, affordance and active inference.
The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level
Characterization of Cellular Responses Involved in Reparative Dentinogenesis in Rat Molars
During primary dentin formation, differentiating primary odontoblasts secrete an organic matrix, consisting principally of type I collagen and non-collagenous proteins, that is capable of mineralizing at its distal front. In contrast to ameloblasts that form enamel and undergo programed cell death, primary odontoblasts remain metabolically active in a functional tooth. When dentin is exposed to caries or by operative procedures, and when exposed dentinal tubules are treated with therapeutic dental materials, the original population of odontoblasts is often injured and destroyed. The characteristics of the replacement pool of cells that form reparative dentin and the biologic mechanisms that modulate the formation of this matrix are poorly understood. Based on the hypothesis that events governing primary dentinogenesis are reiterated during dentin repair, the present study was designed to test whether cells that form reparative dentin are odontoblast-like. Cervical cavities were prepared in rat first molars to generate reparative dentin, and animals were killed at various time intervals. In situ hybridization with gene-specific riboprobes for collagen types I and III was used to study de novo synthesis by cells at the injured dentin-pulp interface. Polyclonal antibodies raised against dentin sialoprotein (DSP), a dentin-specific protein that marks the odontoblast phenotype, were used in immunohistochemical experiments. Data from our temporal and spatial analyses indicated that cells forming reparative dentin synthesize type I but not type III collagen and are immunopositive for DSP. Our results suggest that cells that form reparative dentin are odontoblast-like.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67273/2/10.1177_00220345950740021301.pd
Private patient perceptions about a public programme; what do private Indian tuberculosis patients really feel about directly observed treatment?
<p>Abstract</p> <p>Background</p> <p>India accounts for one-fifth of the global incident cases of tuberculosis(TB). The country presently has the world's largest directly observed treatment, short course (DOTS) programme, that has shown impressive results and covers almost 100% of the billion-plus Indian population. Despite such a successful programme, the majority of Indian patients with tuberculosis prefer private healthcare, although repeated audits of this sector have shown the quality to be poor.</p> <p>We aimed to ascertain the level of awareness and knowledge of private patients with tuberculosis attending our clinic at a tertiary private healthcare institute with regards to the DOTS programme, understanding the reasons behind their preference for private healthcare, and evaluating their perceptions and reasons for accepting or failing to accept directly observed therapy as a treatment option.</p> <p>Methods</p> <p>A structured interview schedule was administered to private patients with tuberculosis at the P.D. Hinduja Hospital and Medical Research Centre, Mumbai, India between January 2006 to November 2007.</p> <p>Results</p> <p>Only 30 of 200 patients (15%) were aware of the DOTS programme. After being explained what directly observed therapy was, 136 patients (68%) found this form of treatment unacceptable.183 patients (91.5%) preferred buying the drugs themselves to visiting a DOTS centre. 90 patients (45%) were not prepared to be observed while swallowing their TB drugs, finding it an intrusion of privacy.</p> <p>Conclusions</p> <p>Our study reveals a poor knowledge and awareness of the DOTS programme among the cohort of TB patients that we interviewed. The control of TB in India will undoubtedly benefit from more patients being attracted to and treated by the existing DOTS programmes. However, directly observed treatment, in its present form, is considered too rigid and intrusive and is unlikely to be accepted by a majority of patients seeking private healthcare. Novel strategies and more flexible options will have to be devised to ensure higher cure rates without compromising patient choice.</p
The Non-Catalytic Carboxyl-Terminal Domain of ARFGAP1 Regulates Actin Cytoskeleton Reorganization by Antagonizing the Activation of Rac1
The regulation of the actin cytoskeleton and membrane trafficking is coordinated in mammalian cells. One of the regulators of membrane traffic, the small GTP-binding protein ARF1, also activates phosphatidylinositol kinases that in turn affect actin polymerization. ARFGAP1 is a GTPase activating protein (GAP) for ARF1 that is found on Golgi membranes. We present evidence that ARFGAP1 not only serves as a GAP for ARF1, but also can affect the actin cytoskeleton.As cells attach to a culture dish foci of actin appear prior to the cells flattening and spreading. We have observed that overexpression of a truncated ARFGAP1 that lacks catalytic activity for ARF, called GAP273, caused these foci to persist for much longer periods than non-transfected cells. This phenomenon was dependent on the level of GAP273 expression. Furthermore, cell spreading after re-plating or cell migration into a previously scraped area was inhibited in cells transfected with GAP273. Live cell imaging of such cells revealed that actin-rich membrane blebs formed that seldom made protrusions of actin spikes or membrane ruffles, suggesting that GAP273 interfered with the regulation of actin dynamics during cell spreading. The over-expression of constitutively active alleles of ARF6 and Rac1 suppressed the effect of GAP273 on actin. In addition, the activation of Rac1 by serum, but not that of RhoA or ARF6, was inhibited in cells over-expressing GAP273, suggesting that Rac1 is a likely downstream effector of ARFGAP1. The carboxyl terminal 65 residues of ARFGAP1 were sufficient to produce the effects on actin and cell spreading in transfected cells and co-localized with cortical actin foci.ARFGAP1 functions as an inhibitor upstream of Rac1 in regulating actin cytoskeleton. In addition to its GAP catalytic domain and Golgi binding domain, it also has an actin regulation domain in the carboxyl-terminal portion of the protein
A Critical Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis
The role of CD8 T cells in anti-tuberculosis immunity in humans remains unknown, and studies of CD8 T cell–mediated protection against tuberculosis in mice have yielded controversial results. Unlike mice, humans and nonhuman primates share a number of important features of the immune system that relate directly to the specificity and functions of CD8 T cells, such as the expression of group 1 CD1 proteins that are capable of presenting Mycobacterium tuberculosis lipids antigens and the cytotoxic/bactericidal protein granulysin. Employing a more relevant nonhuman primate model of human tuberculosis, we examined the contribution of BCG- or M. tuberculosis-elicited CD8 T cells to vaccine-induced immunity against tuberculosis. CD8 depletion compromised BCG vaccine-induced immune control of M. tuberculosis replication in the vaccinated rhesus macaques. Depletion of CD8 T cells in BCG-vaccinated rhesus macaques led to a significant decrease in the vaccine-induced immunity against tuberculosis. Consistently, depletion of CD8 T cells in rhesus macaques that had been previously infected with M. tuberculosis and cured by antibiotic therapy also resulted in a loss of anti-tuberculosis immunity upon M. tuberculosis re-infection. The current study demonstrates a major role for CD8 T cells in anti-tuberculosis immunity, and supports the view that CD8 T cells should be included in strategies for development of new tuberculosis vaccines and immunotherapeutics
Distinct Roles of ComK1 and ComK2 in Gene Regulation in Bacillus cereus
The B. subtilis transcriptional factor ComK regulates a set of genes coding for DNA uptake from the environment and for its integration into the genome. In previous work we showed that Bacillus cereus expressing the B. subtilis ComK protein is able to take up DNA and integrate it into its own genome. To extend our knowledge on the effect of B. subtilis ComK overexpression in B. cereus we first determined which genes are significantly altered. Transcriptome analysis showed that only part of the competence gene cluster is significantly upregulated. Two ComK homologues can be identified in B. cereus that differ in their respective homologies to other ComK proteins. ComK1 is most similar, while ComK2 lacks the C-terminal region previously shown to be important for transcription activation by B. subtilis ComK. comK1 and comK2 overexpression and deletion studies using transcriptomics techniques showed that ComK1 enhances and ComK2 decreases expression of the comG operon, when B. subtilis ComK was overexpressed simultaneously
High levels of multidrug resistant tuberculosis in new and treatment-failure patients from the Revised National Tuberculosis Control Programme in an urban metropolis (Mumbai) in Western India
BACKGROUND: India, China and Russia account for more than 62% of multidrug resistant tuberculosis (MDRTB) globally. Within India, locations like urban metropolitan Mumbai with its burgeoning population and high incidence of TB are suspected to be a focus for MDRTB. However apart from sporadic surveys at watched sites in the country, there has been no systematic attempt by the Revised National Tuberculosis Control Programme (RNTCP) of India to determine the extent of MDRTB in Mumbai that could feed into national estimates. Drug susceptibility testing (DST) is not routinely performed as a part of programme policy and public health laboratory infrastructure, is limited and poorly equipped to cope with large scale testing. METHODS: From April 2004 to January 2007 we determined the extent of drug resistance in 724 {493 newly diagnosed, previously untreated and 231 first line treatment failures (sputum-smear positive at the fifth month after commencement of therapy)} cases of pulmonary tuberculosis drawn from the RNTCP in four suboptimally performing municipal wards of Mumbai. The observations were obtained using a modified radiorespirometric Buddemeyer assay and validated by the Swedish Institute for Infectious Disease Control, Stockholm, a supranational reference laboratory. Data was analyzed utilizing SPSS 10.0 and Epi Info 2002. RESULTS: This study undertaken for the first time in RNTCP outpatients in Mumbai reveals a high proportion of MDRTB strains in both previously untreated (24%) and treatment-failure cases (41%). Amongst new cases, resistance to 3 or 4 drug combinations (amplified drug resistance) including isoniazid (H) and rifampicin (R), was greater (20%) than resistance to H and R alone (4%) at any point in time during the study. The trend for monoresistance was similar in both groups remaining highest to H and lowest to R. External quality control revealed good agreement for H and R resistance (k = 0.77 and 0.76 respectively). CONCLUSION: Levels of MDRTB are much higher in both previously untreated and first line treatment-failure cases in the selected wards in Mumbai than those projected by national estimates. The finding of amplified drug resistance suggests the presence of a well entrenched MDRTB scenario. This study suggests that a wider set of surveillance sites are needed to obtain a more realistic view of the true MDRTB rates throughout the country. This would assist in the planning of an adequate response to the diagnosis and care of MDRTB
In vivo expression of innate immunity markers in patients with mycobacterium tuberculosis infection
<p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLRs), Coronin-1 and Sp110 are essential factors for the containment of <it>Mycobacterium tuberculosis </it>infection. The purpose of this study was to investigate the <it>in vivo </it>expression of these molecules at different stages of the infection and uncover possible relationships between these markers and the state of the disease.</p> <p>Methods</p> <p>Twenty-two patients with active tuberculosis, 15 close contacts of subjects with latent disease, 17 close contacts of subjects negative for mycobacterium antigens and 10 healthy, unrelated to patients, subjects were studied. Quantitative mRNA expression of Coronin-1, Sp110, TLRs-1,-2,-4 and -6 was analysed in total blood cells <it>vs </it>an endogenous house-keeping gene.</p> <p>Results</p> <p>The mRNA expression of Coronin-1, Sp110 and TLR-2 was significantly higher in patients with active tuberculosis and subjects with latent disease compared to the uninfected ones. Positive linear correlation for the expression of those factors was only found in the infected populations.</p> <p>Conclusions</p> <p>Our results suggest that the up-regulation of Coronin-1 and Sp110, through a pathway that also includes TLR-2 up-regulation may be involved in the process of tuberculous infection in humans. However, further studies are needed, in order to elucidate whether the selective upregulation of these factors in the infected patients could serve as a specific molecular marker of tuberculosis.</p
Induction of HIV Neutralizing Antibodies against the MPER of the HIV Envelope Protein by HA/gp41 Chimeric Protein-Based DNA and VLP Vaccines
Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy
A Combination of Dopamine Genes Predicts Success by Professional Wall Street Traders
What determines success on Wall Street? This study examined if genes affecting dopamine levels of professional traders were associated with their career tenure. Sixty professional Wall Street traders were genotyped and compared to a control group who did not trade stocks. We found that distinct alleles of the dopamine receptor 4 promoter (DRD4P) and catecholamine-O-methyltransferase (COMT) that affect synaptic dopamine were predominant in traders. These alleles are associated with moderate, rather than very high or very low, levels of synaptic dopamine. The activity of these alleles correlated positively with years spent trading stocks on Wall Street. Differences in personality and trading behavior were also correlated with allelic variants. This evidence suggests there may be a genetic basis for the traits that make one a successful trader
- …
