757 research outputs found

    Butterfly learning and the diversification of plant leaf shape

    Get PDF
    Visual cues are important for insects to find flowers and host plants. It has been proposed that the diversity of leaf shape in Passiflora vines could be a result of negative frequency dependent selection driven by visual searching behavior among their butterfly herbivores. Here we tested the hypothesis that Heliconius butterflies use leaf shape as a cue to initiate approach toward a host plant. We first tested for the ability to recognize shapes using a food reward conditioning experiment. Butterflies showed an innate preference for flowers with three and five petals. However, they could be trained to increase the frequency of visits to a non-preferred flower with two petals, indicating an ability to learn to associate shape with a reward. Next we investigated shape learning specifically in the context of oviposition by conditioning females to lay eggs on two shoots associated with different artificial leaf shapes: their own host plant, Passiflora biflora, and a lanceolate non-biflora leaf shape. The conditioning treatment had a significant effect on the approach of butterflies to the two leaf shapes, consistent with a role for shape learning in oviposition behavior. This study is the first to show that Heliconius butterflies use shape as a cue for feeding and oviposition, and can learn shape preference for both flowers and leaves. This demonstrates the potential for Heliconius to drive negative frequency dependent selection on the leaf shape of their Passiflora host plants

    The evolution of sex ratio distorter suppression affects a 25 cM genomic region in the butterfly Hypolimnas bolina

    Get PDF
    Open Access ArticleSymbionts that distort their host's sex ratio by favouring the production and survival of females are common in arthropods. Their presence produces intense Fisherian selection to return the sex ratio to parity, typified by the rapid spread of host 'suppressor' loci that restore male survival/development. In this study, we investigated the genomic impact of a selective event of this kind in the butterfly Hypolimnas bolina. Through linkage mapping, we first identified a genomic region that was necessary for males to survive Wolbachia-induced male-killing. We then investigated the genomic impact of the rapid spread of suppression, which converted the Samoan population of this butterfly from a 100:1 female-biased sex ratio in 2001 to a 1:1 sex ratio by 2006. Models of this process revealed the potential for a chromosome-wide effect. To measure the impact of this episode of selection directly, the pattern of genetic variation before and after the spread of suppression was compared. Changes in allele frequencies were observed over a 25 cM region surrounding the suppressor locus, with a reduction in overall diversity observed at loci that co-segregate with the suppressor. These changes exceeded those expected from drift and occurred alongside the generation of linkage disequilibrium. The presence of novel allelic variants in 2006 suggests that the suppressor was likely to have been introduced via immigration rather than through de novo mutation. In addition, further sampling in 2010 indicated that many of the introduced variants were lost or had declined in frequency since 2006. We hypothesize that this loss may have resulted from a period of purifying selection, removing deleterious material that introgressed during the initial sweep. Our observations of the impact of suppression of sex ratio distorting activity reveal a very wide genomic imprint, reflecting its status as one of the strongest selective forces in nature.Natural Environment Research Council (NERC

    What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies

    Get PDF
    The process by which species evolve can be illuminated by investigating barriers that limit gene flow between taxa. Recent radiations, such as Heliconius butterflies, offer the opportunity to compare isolation between pairs of taxa at different stages of ecological, geographical, and phylogenetic divergence. Here, we report a comparative analysis of existing and novel data in order to quantify the strength and direction of isolating barriers within a well-studied clade of Heliconius Our results highlight that increased divergence is associated with the accumulation of stronger and more numerous barriers to gene flow. Wing pattern is both under natural selection for MĂŒllerian mimicry and involved in mate choice, and therefore underlies several isolating barriers. However, pairs which share a similar wing pattern also display strong reproductive isolation mediated by traits other than wing pattern. This suggests that, while wing pattern is a key factor for early stages of divergence, it may become facultative at later stages of divergence. Additional factors including habitat partitioning, hybrid sterility, and chemically mediated mate choice are associated with complete speciation. Therefore, although most previous work has emphasized the role of wing pattern, our comparative results highlight that speciation is a multi-dimensional process, whose completion is stabilized by many factors.This work was supported by ERC Starting Grant Stg-243179 (MimEvol) and French Research Agency grant ANR-12-JSV7-0005 (HybEvol) to M.J. C.S. was funded by the Universidad del Rosario FIUR grant QDN-DG001 and COLCIENCIAS (Grant FP44842-5-2017). R.M.M. was funded by a Research Fellowship at King's College, Cambridge, UK. R.M.M. and C.D.J. were funded by an ERC grant (Speciation Genetics 339873)

    The comparative landscape of duplications in Heliconius melpomene and Heliconius cydno

    Get PDF
    Gene duplications can facilitate adaptation and may lead to interpopulation divergence, causing reproductive isolation. We used whole-genome resequencing data from 34 butterflies to detect duplications in two Heliconius species, Heliconius cydno and Heliconius melpomene. Taking advantage of three distinctive signals of duplication in short-read sequencing data, we identified 744 duplicated loci in H. cydno and H. melpomene and evaluated the accuracy of our approach using single-molecule sequencing. We have found that duplications overlap genes significantly less than expected at random in H. melpomene, consistent with the action of background selection against duplicates in functional regions of the genome. Duplicate loci that are highly differentiated between H. melpomene and H. cydno map to four different chromosomes. Four duplications were identified with a strong signal of divergent selection, including an odorant binding protein and another in close proximity with a known wing colour pattern locus that differs between the two species.AP is funded by a NERC studentship (PFZE/063). CDJ, SLB, JWD and SHM are funded by ERC grant SpeciationGenetics (Grant Number 339873). Pacific Biosciences sequencing was carried out by Karen Oliver in collaboration with Richard Durbin at the Sanger Institute, supported by European Research Council (ERC) Grant Number 339873, Wellcome Trust Grant Number 098051. We thank Jenny Barna and Stuart Rankin for computing support. Analyses were carried out using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England, and funding from the Science and Technology Facilities Council. We thank the editor and three anonymous reviewers for their comments that helped us to improve this manuscript

    Male pheromone composition depends on larval but not adult diet in Heliconius melpomene

    Get PDF
    1. Condition-dependent traits can act as honest signals of mate quality, with fitter individuals able to display preferred phenotypes. Nutrition is known to be an important determinant of individual condition, with diet known to affect many secondary sexual traits. 2. In Heliconius butterflies, male chemical signalling plays an important role in female mate choice. Potential male sex pheromone components have been previously identified, but it is unclear what information they convey to the female. 3. Here, we test the effect of diet on androconial and genital compound production in male Heliconius melpomene rosina. To manipulate larval diet, we rear larvae on three different Passiflora host plants: P. menispermifolia, the preferred host plant, P. vitifolia, and P. platyloba. To manipulate adult diet, we rear adult butterflies with and without access to pollen, a key component of their diet. 4. We find no evidence that adult pollen consumption affects compound production in the first ten days after eclosion. We also find strong overlap in the chemical profiles of individuals reared on different larval host plants. The most abundant compounds produced by the butterflies do not differ between host plant groups. However, some compounds found in small amounts differ both qualitatively and quantitatively. We predict some of these compounds to be of plant origin and the others synthesized by the butterfly. Further electrophysiological and behavioural experiments will be needed to determine the biological significance of these differences.KD was supported by a Natural Research Council Doctoral Training Partnership and a Smithsonian Tropical Research Institute Short Term Fellowship. KJRPB and CDJ were supported by a European Research Council grant number 339873 SpeciationGenetics. WOM was supported by the Smithsonian Tropical Research Institute and NSF grant DEB 1257689. SS thanks the Deutsche Forschungsgemeinschaft (DFG) for support through grant Schu984/12-1
    • 

    corecore