69 research outputs found

    Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films

    Get PDF
    The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated

    Exoerythrocytic Plasmodium Parasites Secrete a Cysteine Protease Inhibitor Involved in Sporozoite Invasion and Capable of Blocking Cell Death of Host Hepatocytes

    Get PDF
    Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    © 2015 AMDA - The Society for Post-Acute and Long-Term Care Medicine. Background: Age-related losses of muscle mass, strength, and function (sarcopenia) pose significant threats to physical performance, independence, and quality of life. Nutritional supplementation could positively influence aspects of sarcopenia and thereby prevent mobility disability. Objective: To test the hypothesis that a specific oral nutritional supplement can result in improvements in measures of sarcopenia. Design: A multicenter, randomized, controlled, double-blind, 2 parallel-group trial among 380 sarcopenic primarily independent-living older adults with Short Physical Performance Battery (SPPB; 0-12) scores between 4 and 9, and a low skeletal muscle mass index. The active group (n = 184) received a vitamin D and leucine-enriched whey protein nutritional supplement to consume twice daily for 13 weeks. The control group (n = 196) received an iso-caloric control product to consume twice daily for 13 weeks. Primary outcomes of handgrip strength and SPPB score, and secondary outcomes of chair-stand test, gait speed, balance score, and appendicular muscle mass (by DXA) were measured at baseline, week 7, and week 13 of the intervention. Results: Handgrip strength and SPPB improved in both groups without significant between-group differences. The active group improved more in the chair-stand test compared with the control group, between-group effect (95% confidence interval): -1.01 seconds (-1.77 to -0.19), P = .018. The active group gained more appendicular muscle mass than the control group, between-group effect: 0.17 kg (0.004-0.338), P = .045. Conclusions: This 13-week intervention of a vitamin D and leucine-enriched whey protein oral nutritional supplement resulted in improvements in muscle mass and lower-extremity function among sarcopenic older adults. This study shows proof-of-principle that specific nutritional supplementation alone might benefit geriatric patients, especially relevant for those who are unable to exercise. These results warrant further investigations into the role of a specific nutritional supplement as part of a multimodal approach to prevent adverse outcomes among older adults at risk for disability

    Sex differences in the brain: a whole body perspective

    Get PDF

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Functional characterization of a novel 3D model of the epithelial-mesenchymal trophic unit

    No full text
    Abstract BACKGROUND/AIM: Epithelial-mesenchymal communication plays a key role in tissue homeostasis and abnormal signaling contributes to chronic airways disease such as COPD. Most in vitro models are limited in complexity and poorly represent this epithelial-mesenchymal trophic unit. We postulated that cellular outgrowth from bronchial tissue would enable development of a mucosal structure that recapitulates better in vivo tissue architecture. MATERIALS AND METHODS: Bronchial tissue was embedded in Matrigel and outgrowth cultures monitored using time-lapse microscopy, electrical resistance, light and electron microscopy. Cultures were challenged repetitively with cigarette smoke extract (CSE). RESULTS: The outgrowths formed as a multicellular sheet with motile cilia becoming evident as the Matrigel was remodeled to provide an air interface; cultures were viable for more than one year. Immunofluorescence and electron microscopy (EM) identified an upper layer of mucociliary epithelium and a lower layer of highly organized extracellular matrix (ECM) interspersed with fibroblastic cells separated by a basement membrane. EM analysis of the mucosal construct after repetitive exposure to CSE revealed epithelial damage, loss of cilia, and ECM remodeling, as occurs in vivo. CONCLUSIONS: We have developed a robust bronchial mucosal model. The structural changes observed following CSE exposure suggest the model should have utility for drug discovery and preclinical testing, especially those targeting airway remodeling
    corecore