239 research outputs found

    Dusty star forming galaxies at high redshift

    Get PDF
    The global star formation rate in high redshift galaxies, based on optical surveys, shows a strong peak at a redshift of z=1.5, which implies that we have already seen most of the formation. High redshift galaxies may, however, emit most of their energy at submillimeter wavelengths if they contain substantial amounts of dust. The dust would absorb the starlight and reradiate it as far-infrared light, which would be redshifted to the submillimeter range. Here we report a deep survey of two blank regions of sky performed at submillimeter wavelengths (450 and 850-micron). If the sources we detect in the 850-micron band are powered by star formation, then each must be converting more than 100 solar masses of gas per year into stars, which is larger than the maximum star formation rates inferred for most optically-selected galaxies. The total amount of high redshift star formation is essentially fixed by the level of background light, but where the peak occurs in redshift for the submillimeter is not yet established. However, the background light contribution from only the sources detected at 850-micron is already comparable to that from the optically-selected sources. Establishing the main epoch of star formation will therefore require a combination of optical and submillimeter studies.Comment: 10 pages + 2 Postscript figures, under embargo at Natur

    Band alignment and enhanced breakdown field of simultaneously oxidized and nitrided Zr film on Si

    Get PDF
    The band alignment of ZrO2/interfacial layer/Si structure fabricated by simultaneous oxidation and nitridation of sputtered Zr on Si in N2O at 700°C for different durations has been established by using X-ray photoelectron spectroscopy. Valence band offset of ZrO2/Si was found to be 4.75 eV, while the highest corresponding conduction offset of ZrO2/interfacial layer was found to be 3.40 eV; owing to the combination of relatively larger bandgaps, it enhanced electrical breakdown field to 13.6 MV/cm at 10-6 A/cm2

    A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat

    Get PDF
    Background Phosphorus (P) is an essential macronutrient for plant growth, and is required in large quantities by elite varieties of crops to maintain yields. Approximately 70% of global cultivated land suffers from P deficiency, and it has recently been estimated that worldwide P resources will be exhausted by the end of this century, increasing the demand for crops more efficient in their P usage. A greater understanding of how plants are able to maintain yield with lower P inputs is, therefore, highly desirable to both breeders and farmers. Here, we clone the wheat (Triticum aestivum L.) homologue of the rice PSTOL gene (OsPSTOL), and characterize its role in phosphate nutrition plus other agronomically important traits. Results TaPSTOL is a single copy gene located on the short arm of chromosome 5A, encoding a putative kinase protein, and shares a high level of sequence similarity to OsPSTOL. We re-sequenced TaPSTOL from 24 different wheat accessions and (3) three T. durum varieties. No sequence differences were detected in 26 of the accessions, whereas two indels were identified in the promoter region of one of the durum wheats. We characterised the expression of TaPSTOL under different P concentrations and demonstrated that the promoter was induced in root tips and hairs under P limiting conditions. Overexpression and RNAi silencing of TaPSTOL in transgenic wheat lines showed that there was a significant effect upon root biomass, flowering time independent of P treatment, tiller number and seed yield, correlating with the expression of TaPSTOL. However this did not increase PUE as elevated P concentration in the grain did not correspond to increased yields. Conclusions Manipulation of TaPSTOL expression in wheat shows it is responsible for many of the previously described phenotypic advantages as OsPSTOL except yield. Furthermore, we show TaPSTOL contributes to additional agronomically important traits including flowering time and grain size. Analysis of TaPSTOL sequences from a broad selection of wheat varieties, encompassing 91% of the genetic diversity in UK bread wheat, showed that there is very little genetic variation in this gene, which would suggest that this locus may have been under high selection pressure

    Intracranial Administration of P Gene siRNA Protects Mice from Lethal Chandipura Virus Encephalitis

    Get PDF
    Background: In parts of India, Chandipura Virus (CHPV) has emerged as an encephalitis causing pathogen in both epidemic and sporadic forms. This pediatric disease follows rapid course leading to 55–75 % mortality. In the absence of specific treatment, effectiveness of RNA interference (RNAi) was evaluated. Methods and Findings: Efficacy of synthetic short interfering RNA (siRNA) or short hairpin RNA (shRNA) in protecting mice from CHPV infection was assessed. The target genes were P and M genes primarily because important role of the former in viral replication and lethal nature of the latter. Real time one step RT-PCR and plaque assay were used for the assessment of gene silencing. Using pAcGFP1N1-CHPV-P, we showed that P-2 siRNA was most efficient in reducing the expression of P gene in-vitro. Both quantitative assays documented 2logs reduction in the virus titer when P-2, M-5 or M-6 siRNAs were transfected 2hr post infection (PI). Use of these siRNAs in combination did not result in enhanced efficiency. P-2 siRNA was found to tolerate four mismatches in the center. As compared to five different shRNAs, P-2 siRNA was most effective in inhibiting CHPV replication. An extended survival was noted when mice infected intracranially with 100 LD 50 CHPV were treated with cationic lipid complexed 5 mg P-2 siRNA simultaneously. Infection with 10LD 50 and treatment with two doses of siRNA first, simultaneously and second 24 hr PI, resulted in 70 % survival. Surviving mice showed 4logs less CHPV titers in brain without histopathological changes or antibody response. Gene expression profiles of P-2 siRNA treated mice showed no interferon response. First dose of siRNA at 2h

    Mild Mitochondrial Uncoupling and Calorie Restriction Increase Fasting eNOS, Akt and Mitochondrial Biogenesis

    Get PDF
    Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO• products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis

    Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer

    Get PDF
    Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localize to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequisite for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knock-in of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, cyclin-dependent kinase (CDK)7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knock-in mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine-resistant breast cancer mediated by ER mutations

    Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals

    Get PDF
    Background: Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results: The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion: We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages.Vidushi S. Patel, Steven J.B. Cooper, Janine E. Deakin, Bob Fulton, Tina Graves, Wesley C. Warren, Richard K. Wilson and Jennifer A.M. Grave
    corecore