135 research outputs found

    Use and traditional management of Anadenanthera colubrina (Vell.) Brenan in the semi-arid region of northeastern Brazil

    Get PDF
    The use and management of "angico" (Anadenanthera colubrina (Vell.) Brenan) by a rural community in northeastern Brazil was examined. By employing different techniques of data collection and population structure analysis, it was determined that this species had multiple uses within the local community (especially as timber and for other wood products), and that local management of this species is based on simple maintenance and harvesting of individuals in agroforest homegardens. The study of the population structure of this tree species indicated that management and conservation strategies must include the participation of the local community

    BDNF/TrkB Signaling as a Potential Novel Target in Pediatric Brain Tumors: Anticancer Activity of Selective TrkB Inhibition in Medulloblastoma Cells

    Get PDF
    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Deregulation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling has been associated with increased proliferative capabilities, invasiveness, and chemoresistance in several types of cancer. However, the relevance of this pathway in MB remains unknown. Here, we show that the selective TrkB inhibitor N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo[b]thiophene-2-carboxamide (ANA-12) markedly reduced the viability and survival of human cell lines representative of different MB molecular subgroups. These findings provide the first evidence supporting further investigation of TrkB inhibition as a potential novel strategy for MB treatment

    Fine-Tuning Roles of Endogenous Brain-Derived Neurotrophic Factor, TrkB and Sortilin in Colorectal Cancer Cell Survival

    Get PDF
    International audienceBACKGROUND: Neurotrophin receptors were initially identified in neural cells. They were recently detected in some cancers in association with invasiveness, but the function of these tyrosine kinase receptors was not previously investigated in colorectal cancer (CRC) cells. METHODS AND FINDINGS: We report herein that human CRC cell lines synthesize the neural growth factor Brain-derived neurotrophic factor (BDNF) under stress conditions (serum starvation). In parallel, CRC cells expressed high- (TrkB) and low-affinity (p75(NTR)) receptors at the plasma membrane, whereas TrkA and TrkC, two other high affinity receptors for NGF and NT-3, respectively, were undetectable. We demonstrate that BDNF induced cell proliferation and had an anti-apoptotic effect mediated through TrkB, as assessed by K252a, a Trk pharmacologic inhibitor. It suppressed both cell proliferation and survival of CRC cells that do not express TrkA nor TrkC. In parallel to the increase of BDNF secretion, sortilin, a protein acting as a neurotrophin transporter as well as a co-receptor for p75(NTR), was increased in the cytoplasm of primary and metastatic CRC cells, which suggests that sortilin could regulate neurotrophin transport in these cells. However, pro-BDNF, also detected in CRC cells, was co-expressed with p75(NTR) at the cell membrane and co-localized with sortilin. In contrast to BDNF, exogenous pro-BDNF induced CRC apoptosis, which suggests that a counterbalance mechanism is involved in the control of CRC cell survival, through sortilin as the co-receptor for p75(NTR), the high affinity receptor for pro-neurotrophins. Likewise, we show that BDNF and TrkB transcripts (and not p75(NTR)) are overexpressed in the patients' tumors by comparison with their adjacent normal tissues, notably in advanced stages of CRC. CONCLUSION: Taken together, these results highlight that BDNF and TrkB are essential for CRC cell growth and survival in vitro and in tumors. This autocrine loop could be of major importance to define new targeted therapies

    Sequencing technologies and genome sequencing

    Get PDF
    The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscopeâ„¢, SMRTâ„¢ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research
    • …
    corecore