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Abstract 

 

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. 

Deregulation of BDNF/TrkB signaling has been associated with increased proliferative 

capabilities, invasiveness and chemo-resistance in several types of cancer. However, the 

relevance of this pathway in MB remains unknown. Here, we show that the selective 

TrkB inhibitor ANA-12 markedly reduced the viability and survival of human cell lines 

representative of different MB molecular subgroups. These findings provide the first 

evidence supporting further investigation of TrkB inhibition as a potential novel 

strategy for MB treatment. 

 

Keywords TrkB • Brain-derived neurotrophic factor • Medulloblastoma • Brain tumor • 

Childhood cancer 
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Introduction 

 

Brain tumors represent the main leading cause of cancer-related death in childhood. 

Medulloblastoma (MB), the most common type of brain cancer afflicting children, is an 

embryonal solid tumor that usually arises in the cerebellum and spreads through the 

cerebrospinal fluid (CSF), leading to metastasis (Brandes et al. 2015; Roussel et al. 

2011). The use of next-generation sequencing and other advanced molecular biology 

approaches has recently revolutionized our understanding of MB biology, leading to the 

current consensus that MB represents a heterogeneous group of tumors that can be 

divided into four distinct molecular subgroups – WNT, SHH, Group 3 and Group 4 

(Taylor et al. 2012). MB subgroups display distinct cellular origins, mutations, gene 

expression signatures, methylation profiles as well as clinical course (Northcott et al. 

2012; Rusert et al. 2014.). Despite the remarkable recent advances in the understanding 

of MB biology, one-third of patients still have low chance of being cured. 

Contemporary therapeutic approaches are highly toxic, and survivors often suffer from 

treatment-related neurological disabilities (Samkari et al. 2015). Therefore, the 

development of novel specific therapies is urgently needed. 

Emerging therapeutic targets for cancer treatment include receptors for 

neurotrophins (NT), which are also important for the normal development and function 

of the CNS. The activities of NTs are mediated by NGF, BDNF, NT-3 and NT-4/5 

binding to their related tropomyosin kinase receptors, TrkA, TrkB and TrkC 

respectively (Huang and Reichardt 2003; Nakagawara, 2001). Trk activation or 

mutations have been detected in several types of cancer, including tumors of neural 

origin, such as neuroblastoma and MB (Thiele et al. 2009; Tan et al. 2014). BDNF and 
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TrkB overexpression or TrkB activation have been characterized in neuroblastoma 

(Brodeur et al. 2009), lung (Sinkevicius et al. 2014), colorectal (de Farias et al. 2010), 

prostate (Bronzetti et al. 2008) and breast cancers (Vanhecke et al. 2011). TrkB-positive 

cells are linked to increased proliferative capabilities, anoikis resistance, metastasis, 

invasiveness and chemo- resistance (de Farias et al. 2012; Desmet and Pepper, 2006; Li 

et al 2007; Thiele et al. 2009.  

Expression of BDNF and TrkB has been detected in both MB tumor samples and 

MB cell lines (Chou et al. 1997; Schmidt et al. 2010). Previous reports have shown that, 

under certain experimental conditions, human recombinant BDNF alone or in 

combination of HDAC inhibitors, is able to decrease cell viability in MB cell lines (Nör 

et al. 2011; Schmidt et al. 2010). However, the biological role and clinical significance 

of BDNF/TrkB signaling in MB remain poorly understood, and previous studies have 

not verified whether TrkB inhibition affects MB growth. 

 A small-molecule selective TrkB inhibitor, ANA-12, has been recently 

developed and has become a useful tool for examining the involvement of BDNF/TrkB 

signaling in physiological and pathological processes (Cazorla et al. 2011). Here, we 

investigated the effects of ANA-12 in human pediatric MB cell lines representative of 

different molecular subgroups. ANA-12 reduced cell viability and clonogenic survival 

in a dose-dependent manner. These findings provide the first evidence suggesting TrkB 

inhibition as a potential targeted therapy for MB. 
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Materials and Methods 

 

Reagents 

 

ANA-12 (N-[2-[[(Hexahydro-2-oxo-1H-azepin-3-yl) amino] carbonyl] phenyl]-benzo 

[b] thiophene-2-carboxamide), human recombinant BDNF, and dimethyl sulfoxide 

(DMSO) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). 

Annexin V-FITC was obtained from Santa Cruz Biotechnology (Dallas, TX, USA.). 

Propidium iodide (PI), trizol, SuperScript® III Reverse Transcriptase and low DNA 

mass ladder were provided by Invitrogen-Life technologies (Carlsbad, CA, USA). 

GoTaq® Hot Start Polymerase and RQ1 RNase-Free DNase were supplied by Promega 

(Madison, WI, USA). Ethidium bromide was purchased from Biotium (Hayward, USA). 

All culture materials were obtained from Gibco-Life technologies (Grand Island, NY, 

USA). Cisplatin was donated by the Kaplan Oncology Institute (Porto Alegre, Brazil). 

 

Cell Culture and Treatments 

 

Human MB cell lines Daoy, D283, ONS-76 and UW-228 were kindly donated by Dr. 

Michael D. Taylor (The Hospital for Sick Children, Toronto, Canada). Daoy, D283 and 

ONS-76 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) low 

glucose, while UW-228 cell was cultured in DMEM: Nutrient Mixture F-12 (DMEM/F-

12), both media supplemented with 10 % (v/v) fetal bovine serum (FBS) and 1% (v/v) 
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penicillin/streptomycin. Cells were incubated in a humidified atmosphere of 5% CO2 at 

37°C. 

Cells were treated with increasing concentrations of ANA-12 (5, 20 or 30 μM) 

or BDNF (50 ng/ml) in complete medium for 48 hours. ANA-12 was dissolved in 

DMSO. The concentration of the vehicle DMSO was used as control and did not exceed 

0.5% (v/v). ANA-12 concentrations were based in a previous in vitro study using this 

inhibitor (Sinkevicius  et al. 2014). 

 

Cell Viability 

 

Cell viability was assessed by trypan blue cell counting as described previously (Jaeger 

et al. 2013; Nör et al. 2011). Daoy, ONS-76, UW-228 and D283 cells were seeded at a 

density of 3x103 cells per well in complete medium into 96-well plates (TPP® 

Switzerland). After overnight culture in complete medium, cells were treated with 

ANA-12. After 48 hours of treatment, the medium was removed, cells were washed 

with PBS and 50 μl of 0.25% trypsin/EDTA solution was added to detach cells. Cell 

suspension was homogenized with 0.4 % Trypan blue 1:1 and counted immediately in a 

hemocytometer. Experiments were performed at least four times in quadruplicates for 

each treatment. Cell viability was normalized to the control DMSO. 

 

Cell Survival  
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For evaluation of cell survival, UW-228 and D283 cells were plated at 400 cells per 

well in six-well plates (NEST®, China). Cells were allowed to adhere and then were 

incubated overnight in complete medium at 37°C, and were then exposed to ANA-12 or 

BDNF. After 48 h the cells were washed with standard medium to remove ANA-12 or 

BDNF and cultured for another week, with the medium being changed every 2 days. 

Cells were then fixed with 70 % ethanol and counterstained with 0.5 % crystal violet. 

Colony numbers and colony size were assessed by ImageJ plugin, “ColonyArea” as 

previously described by  Guzmán et al (2014). 

 

Cell Cycle 

 

UW-228 cell was plated at 15x103 cells per well in 24-well plate (NEST®, China), 

followed by drug treatments as describe above. After 48h of treatment, both floating and 

attached cells were harvested, washed twice with PBS and marked with a solution 

containing 50 μg/ml PI, 0.1% Triton X-100 and 0,1% sodium citrate for 15 min, in the 

dark, at room temperature. Cells were analyzed by flow cytometer (Attune® applied 

biosystems). Single cells were gated using width and area parameters. An area 

parameter histogram was used to determine the percentage of cells in Sub-G1/G0, G1, S 

and G2 phases. 

 

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 
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Total RNA from UW-228 cell was extracted using trizol reagent, in accordance with the 

manufacturer’s instructions, quantified in NanoDrop (Thermo Scientific), treated with 

DNase and reverse-transcribed with superscript® III First-Strand Synthesis supermix. 

BDNF, TrkB and β-actin primers used for RT-PCR amplification were designed 

according to the corresponding GenBank sequence and are shown in Table 1. The 

expression of β-actin was measured as an internal control. 

PCR conditions for experiments were 1.5 mM MgCl2, 0.4 μM for each primer, 

0.2 dNTPs, 1.25u GoTaq® Hot Start Polymerase, and 1 μl cDNA template. All assays 

were carried out in a total volume of 15 μl using 35 cycles for amplification that 

consisted of 1 min at 95 °C, denaturation at 94 °C for 30 s, annealing at 58–60 °C, 

accordingly to the specific primer, for 30 s, and extension of primers at 72 °C for 45 s, 

followed by a final extension at 72 °C for 10 min. The products of BDNF, TrkB and β-

actin were electrophoresed through 1.5 % agarose gels containing ethidium bromide and 

visualized with ultraviolet light. The fragments’ length was confirmed using a low DNA 

mass ladder. For each set of PCR reactions, a negative control was included. 

 

Statistical Analysis 

 

Data are shown as mean ± standard error of mean (SEM). Statistical analysis was 

performed by one-way analysis of variance (ANOVA) followed by tukey post-hoc test 

for multiple comparisons of at least three independent experiments for each 

experiments; P values under 0.05 was considered significant. Analyses were conducted 

using the GraphPad Prism 6 software (GraphPad Software, San Diego, CA, USA). 
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Table 1 should be included here 

    

Results 

 

TrkB Inhibition Reduces MB Cell Viability 

 

The cytotoxic activity of the selective TrkB inhibitor ANA-12 was evaluated by 

trypan blue cell counting assay at 48 hours under standard growth conditions (Fig. 1). 

Analysis with ANOVA indicated that ANA-12 produced a reduction of MB cell 

viability at all doses tested (F = 2.182, df = 9, P = 0.0392). Further analysis with 

Tukey tests comparing control and drug-treated cells showed that ANA-12 at 5 μM 

was ineffective in ONS-76, UW-228 and Daoy cells, but significantly reduce cell 

viability in D283 cells (29.8 ± 9.03%; P < 0.01). Treatment with ANA-12 at 20 μM 

reduced viability in all cell lines (ONS-76: 62.95 ± 4.8%, p < 0.001; UW-228:  57.69 

± 5.3%, P < 0.001; Daoy: 59.41 ± 9.27%, P < 0.01; D283 62.51 ± 4.08%, P < 

0.0001). The maximal decrease in cell viability was produced by ANA-12 at 30 μM 

(ONS-76: 75.43 ± 6.9%, P < 0.0001; UW-228: 94.80 ± 4.16%, P < 0.001; Daoy: 

90.10 ± 3.52%, P < 0.001; D283: 93.58 ± 0.82%, P < 0.0001). 
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Figure 1 should be included here 

    

TrkB Inhibition Reduces MB Cell Survival 

 

The effects of ANA-12 and BDNF on colony formation were analyzed in UW-228 and 

D283 cells (Fig. 2). ANA-12 reduced colony formation in both cell lines over one week, 

after 48h of treatment. BDNF alone did not affect colony formation. In UW-228 cells, 

ANA-12 decreased colony number at 20 μM (10.53 ± 5.69%, P < 0.01) and 30 μM 

(3.03 ± 0.87%, P < 0.001), when compared to both control (33.4 ± 1.75%) and BDNF-

treated cells (21.26 ± 3.91%), whereas colony size was not significantly affected (Fig. 

2a, 2c). In D283 cells, colony number was reduced only by the dose of 30 μM of ANA-

12 (3.76 ± 2.39%, P < 0.05) when compared with eiher control (22.71 ± 5.09%) or 

BDNF-treated cells (22.16 ± 2.42%). This dose of ANA-12 also decreased colony size 

(1.53 ± 0.99%, P < 0.05) in comparison with either control cells (9.94 ± 2.51%) and 

cells exposed to BDNF (10.03 ± 1.66%) (Fig. 2b, 2d). 

 

 

Figure 2 should be included here 
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TrkB Inhibition alters MB cell cycle 

  

UW-228 cells were used to assess cell cycle distribution after 48h of ANA-12 

treatment. ANA-12 induced sub-G1 cell cycle arrest in a dose-dependent manner (Fig. 

3). Intracellular PI fluorescence intensities are presented (Fig. 3a) and the percentage of 

cells in the sub-G1 phase was significantly increased after treatment with ANA-12 at 30 

μM (sub G1: 17.3 ± 3.99%, P < 0.001) compared to either controls (sub-G1: 1.73 ± 

0.07%) and BDNF-treated cells (sub-G1: 1.09 ± 0.55%). In addition, the percentage of 

cells in the G1 phase was inhibited by ANA-12 at 30 μM (G1: 36.86 ± 4.57%, P < 

0.001) compared to controls (G1: 65.3 ± 4.90%) and BDNF-treated cells (G1: 64.50 ± 

2.83%) (Fig. 3b). BDNF alone did not affect the cell cycle. These data suggest that 

ANA-12 induced cell cycle arrest in UW-228 cell. 

    

UW-228 MB cells express mRNA for TrkB and BDNF 

 

Reverse transcriptase polymerase chain reaction (RT-PCR) analysis confirmed that 

UW-228 cell express mRNA for BDNF and TrkB. Two transcripts with 130 bp and 123 

bp of size, representing a fragment of TrkB and BDNF respectively, were identified 

(Fig. 3c). BDNF and TrkB expression for Daoy, D283 and ONS-76 MB cells were 

demonstrated in previous reports (Nör et al. 2011; Schmidt et al. 2010). 

 

 

Figure 3 should be included here 
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Discussion 

 

Aggressive multimodal therapy in MB patients is generally associated with long term 

side effects, therefore novel antitumor strategies targeting deregulated pathways need to 

be explored (Gottardo et al. 2014). Given that BDNF/TrkB signaling has been shown to 

promote tumor cell proliferation, survival and increase chemo-resistance in several type 

of cancers (Tan et al. 2014), we hypothesized that this pathway could regulate cell 

viability in pediatric MB. To study BDNF/TrkB signaling in MB cells, we employed a 

small molecule, ANA-12, which blocks TrkB selectively (Cazorla et al. 2011). We used 

MB cell lines that were recently characterized as representative of different MB 

molecular subgroups lines representative of different molecular groups of MB. Daoy, 

ONS-76 and UW-228 cells show features of SHH tumors, whereas D283 displays MYC 

amplification and is classified as Group 3 MB subgroup 3 (Xu et al. 2015). Our results 

indicate that TrkB inhibition can reduce cell viability and survival of MB cells. 

 The suggestion that BDNF/TrkB might be relevant in MB first came from early 

studies examining this pathway in tumor samples and cell lines. Segal et al. (1994) 

found that the level of TrkB mRNA expression was not associated with extent of 

disease progression or patient survival. Washiyama et al. (1996) evaluated 27 samples 

from MB patients and found 67% of tumors expressing TrkB and 22% expressing 

BDNF. However, the molecular classification of MB was only recently defined (Xu et 

al. 2015), and the relationship between expression levels of NTs and Trk receptors in 

different subgroups remains to be characterized. Expression of BDNF and TrkB was 

previously identified in Daoy, ONS-76 and D283 cell lines (Schmidt et al. 2010), and in 
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the present study we demonstrate that UW-228 cell likewise express mRNA for both 

TrkB and BDNF. 

 The present report is the first demonstration that selective TrkB inhibition 

displays antitumor effect in MB cells. Moreover, it was previously demonstrated that a 

pan-Trk inhibitor can reduce MB xenografts  growth (Evans et al. 1999). Because we 

did not aim to address candidate downstream signaling components possibly involved in 

mediating the effects, any discussion of mechanisms remain speculative at this point. 

TrkB activation initiate multiple signaling cascades, including mitogen-activated protein 

kinase (MAPK) pathway, phosphatidyl-inositide 3-kinase (PI3K) pathway, and 

phospholipase C-gamma (PLC-γ). All these pathways play important roles in cell 

proliferation, differentiation and survival, consistent with a role for TrkB in these 

cellular processes (Boulle et al. 2012). 

The sub-G1 accumulation observed in cell cycle analyses may be related to 

apoptotic cells, which can be identified on DNA frequency histograms as cells with 

fractional DNA content (Kajstura et al. 2007). A previous report using leukemia cells 

found apoptosis and reduction of GSK-3β phosphorylation after ANA-12 treatment 

(Polakowski et al. 2014). In neurons, GSK-3β activation counteracts the effects of 

BDNF, and specific downstream signaling of TrkB phosphorylation pathway converge 

to the inactivation of GSK-3β (Phukan et al. 2010). The involvement of GSK-3β in a 

variety of cellular responses, including cytoskeleton regulation, cell cycle progression, 

apoptosis and cell adhesion, is well established (McCubrey et al. 2014). It has been also 

postulated that constitutive phosphorylation of GSK-3β, found in many tumor cell 

types, including MB, improves cell survival and contributes to malignant transformation 
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(Urbanska et al. 2007). However, the functional role of ANA-12 in apoptosis of MB 

cells remains to be characterized.  

In summary, the present study found pronounced dose-dependent inhibitory 

effects of a selective TrkB inhibitor, ANA-12, on cell viability and survival in pediatric 

MB cell lines in vitro. These results provide the first evidence that selective TrkB 

inhibition may be a promising strategy worth further investigation in experimental MB. 
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Table 1. Forward and reverse primers used for RT-PCR amplification 

Gene Primer sequence PCR product size (bp) 

 

TrKB 

Forward: 5’-TGGTGCATTCCATTCACTGT-3’ 130 

Reverse:5’-CGTGGTACTCCGTGTGATTG-3’ 

 

BDNF Forward:5’-GGCTATGTGGAGTTGGCATT-3’ 123 

Reverse:5’-CTTCAGAGGCCTTCGTTTTG-3’ 

 

β-actin Forward:5’-GAGACCTTCAACACCCCAG 3′ 190 

Reverse:5’-GCTACAGCTTCACCAGCAG 3′ 
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Legends for figures 

 

Fig. 1. A TrkB inhibitor dose-dependently reduces MB cell viability. ANA-12 

decreased the viability of (a) ONS-76, (b) UW-228, (c) Daoy, and (d) D283 cells. Cells 

were treated with increasing concentrations of ANA-12. After 48 h of drug exposure the 

cell viability was assessed by trypan blue counting assay. Data are expressed by mean ± 

SEM percentage of control (the average value among replicates was assumed as 100%) 

and represent four independent experiments performed in quadruplicates. Statistically 

significant differences are marked by asterisks as follows: ** P < 0.01, *** P < 0.001, 

and **** P < 0.0001. 

 

Fig. 2. TrkB inhibition reduces colony formation in MB cells. UW-228 and D283 cells 

were exposed to BDNF (50 ng/ml) or ANA-12 (5, 20 or 30 μM) for 48 hours and 

subsequently maintained in standard growth medium for 7 days. Colony formation and 

colony size were assessed using ImageJ version 1.47n software. (a and c) Data are mean 

± SEM % colony number and colony size. Data represent at least three independent 

experiments. Statistically significant differences are marked by asterisks, * P < 0.05 and 

** P < 0.01. (b and d) Representative images of colonies formed under the different 

treatment conditions. 

 

Fig. 3. TrkB induced sub-G1 cell cycle arrest in UW-228 MB cell. Cells were exposed 

to BDNF (50 ng/ml) or ANA-12 (5, 20 and 30μM) for 48 hours and subsequently the 
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cell cycle distribution was determined by propidium iodide staining. (a) Representative 

DNA fluorescence histograms of UW-228 cell following the treatments and control 

(DMSO). (b) Data are mean ± SEM % of cells in each cycle phase. Statistically 

significant differences are marked by asterisks, *** P < 0.001. The data represents three 

independent experiments. (c) UW-228 MB cell express TrkB and BDNF. mRNA was 

extracted from UW-228 cells and RT-PCR was performed. A transcript with 130 bp, 

representing a fragment of TrkB gene, was identified. A transcript with 123 bp, 

representing a fragment of BDNF, was identified. Β-actin was used as control. 
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