806 research outputs found

    Vocabulary Learning in a Yorkshire Terrier: Slow Mapping of Spoken Words

    Get PDF
    Rapid vocabulary learning in children has been attributed to “fast mapping”, with new words often claimed to be learned through a single presentation. As reported in 2004 in Science a border collie (Rico) not only learned to identify more than 200 words, but fast mapped the new words, remembering meanings after just one presentation. Our research tests the fast mapping interpretation of the Science paper based on Rico's results, while extending the demonstration of large vocabulary recognition to a lap dog. We tested a Yorkshire terrier (Bailey) with the same procedures as Rico, illustrating that Bailey accurately retrieved randomly selected toys from a set of 117 on voice command of the owner. Second we tested her retrieval based on two additional voices, one male, one female, with different accents that had never been involved in her training, again showing she was capable of recognition by voice command. Third, we did both exclusion-based training of new items (toys she had never seen before with names she had never heard before) embedded in a set of known items, with subsequent retention tests designed as in the Rico experiment. After Bailey succeeded on exclusion and retention tests, a crucial evaluation of true mapping tested items previously successfully retrieved in exclusion and retention, but now pitted against each other in a two-choice task. Bailey failed on the true mapping task repeatedly, illustrating that the claim of fast mapping in Rico had not been proven, because no true mapping task had ever been conducted with him. It appears that the task called retention in the Rico study only demonstrated success in retrieval by a process of extended exclusion

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    An experimental model of rhinovirus induced chronic obstructive pulmonary disease exacerbations: a pilot study

    Get PDF
    BACKGROUND: Acute exacerbations of COPD are a major cause of morbidity, mortality and hospitalisation. Respiratory viruses are associated with the majority of exacerbations but a causal relationship has not been demonstrated and the mechanisms of virus-induced exacerbations are poorly understood. Development of a human experimental model would provide evidence of causation and would greatly facilitate understanding mechanisms, but no such model exists. METHODS: We aimed to evaluate the feasibility of developing an experimental model of rhinovirus induced COPD exacerbations and to assess safety of rhinovirus infection in COPD patients. We carried out a pilot virus dose escalating study to assess the minimum dose of rhinovirus 16 required to induce experimental rhinovirus infection in subjects with COPD (GOLD stage II). Outcomes were assessed by monitoring of upper and lower respiratory tract symptoms, lung function, and virus replication and inflammatory responses in nasal lavage. RESULTS: All 4 subjects developed symptomatic colds with the lowest dose of virus tested, associated with evidence of viral replication and increased pro-inflammatory cytokines in nasal lavage. These were accompanied by significant increases in lower respiratory tract symptoms and reductions in PEF and FEV(1). There were no severe exacerbations or other adverse events. CONCLUSION: Low dose experimental rhinovirus infection in patients with COPD induces symptoms and lung function changes typical of an acute exacerbation of COPD, appears safe, and provides preliminary evidence of causation

    Decay Kinetics of an Interferon Gamma Release Assay with Anti-Tuberculosis Therapy in Newly Diagnosed Tuberculosis Cases

    Get PDF
    Qualitative and quantitative changes in IGRA response offer promise as biomarkers to monitor Tuberculosis (TB) drug therapy, and for the comparison of new interventions. We studied the decay kinetics of TB-specific antigen T-cell responses measured with an in-house ELISPOT assay during the course of therapy.Newly diagnosed sputum smear positive TB cases with typical TB chest radiographs were recruited. All patients were given standard anti-TB treatment. Each subject was followed up for 6 months and treatment outcomes were documented. Blood samples were obtained for the ESAT-6 and CFP-10 (EC) ELISPOT at diagnosis, 1-, 2-, 4- and 6-months. Qualitative and quantitative reversion of the ELISPOT results were assessed with McNemar test, conditional logistic regression and mixed-effects hierarchical Poisson models.A total of 116 cases were recruited and EC ELISPOT was positive for 87% (95 of 109) at recruitment. There was a significant decrease in the proportion of EC ELISPOT positive cases over the treatment period (p<0.001). Most of the reversion occurred between the start and first month of treatment and at completion at 6 months. ESAT-6 had higher median counts compared to CFP-10 at all time points. Counts for each antigen declined significantly with therapy (p<0.001). Reverters had lower median SFUs at the start of treatment compared to non-Reverters for both antigens. Apart from the higher median counts for non-Reverters, no other risk factors for non-reversion were found.TB treatment induces qualitative and quantitative reversion of a positive in-house IGRA in newly diagnosed cases of active TB disease. As this does not occur reliably in the majority of cured individuals, qualitative and quantitative reversion of an IGRA ELISPOT has limited clinical utility as a surrogate marker of treatment efficacy

    T-SPOT.TB responses during treatment of pulmonary tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immune responses to <it>Mycobacterium tuberculosis </it>antigens could serve as surrogate markers of treatment response.</p> <p>Methods</p> <p>Using the T-SPOT.<it>TB </it>assay and frozen peripheral blood mononuclear cells, we enumerated ESAT-6- and CFP-10-specific IFN-γ-producing T cells over time in pulmonary TB patients receiving directly observed treatment. T cell responses (measured as "spot forming cells" or "SFCs") were assessed prior to treatment and at 16 and 24 weeks of treatment.</p> <p>Results</p> <p>58 patients were evaluated, of whom 57 were HIV seronegative. Mean (SD) ESAT-6, CFP-10, and summed RD1 specific SFCs declined from 42.7 (72.7), 41.2 (66.4), and 83.8 (105.7) at baseline to 23.3 (39.4, p = 0.01), 23.2 (29.4, p = 0.18), and 46.5 (59.5, p = 0.02) at completion of 24 weeks of treatment, respectively. Only 10% of individuals with a baseline reactive test reverted to negative at treatment week 24. For the group that was culture positive at completion of 8 weeks of treatment compared to the culture negative group, the incidence rate ratio (IRR) of ESAT-6, CFP-10, and summed RD1 specific SFC counts were, respectively, 2.23 (p = 0.048), 1.51 (p = 0.20), and 1.83 (p = 0.047). Patients with cavitary disease had mean ESAT-6 specific SFC counts that were higher than those without cavitary disease (IRR 2.08, p = 0.034).</p> <p>Conclusion</p> <p>IFN-γ-producing RD1-specific T cells, as measured in the T-SPOT.<it>TB </it>assay, may be directly related to bacterial load in patients undergoing treatment for pulmonary TB. However, high inter-subject variability in quantitative results coupled with failure of reversion to negative of qualitative results in most subjects at treatment completion may limit the utility of this assay as a surrogate marker for treatment efficacy.</p

    Enumeration of Functional T-Cell Subsets by Fluorescence-Immunospot Defines Signatures of Pathogen Burden in Tuberculosis

    Get PDF
    IFN-γ and IL-2 cytokine-profiles define three functional T-cell subsets which may correlate with pathogen load in chronic intracellular infections. We therefore investigated the feasibility of the immunospot platform to rapidly enumerate T-cell subsets by single-cell IFN-γ/IL-2 cytokine-profiling and establish whether immunospot-based T-cell signatures distinguish different clinical stages of human tuberculosis infection.We used fluorophore-labelled anti-IFN-γ and anti-IL-2 antibodies with digital overlay of spatially-mapped colour-filtered images to enumerate dual and single cytokine-secreting M. tuberculosis antigen-specific T-cells in tuberculosis patients and in latent tuberculosis infection (LTBI). We validated results against established measures of cytokine-secreting T-cells.Fluorescence-immunospot correlated closely with single-cytokine enzyme-linked-immunospot for IFN-γ-secreting T-cells and IL-2-secreting T-cells and flow-cytometry-based detection of dual IFN-γ/IL-2-secreting T-cells. The untreated tuberculosis signature was dominated by IFN-γ-only-secreting T-cells which shifted consistently in longitudinally-followed patients during treatment to a signature dominated by dual IFN-γ/IL-2-secreting T-cells in treated patients. The LTBI signature differed from active tuberculosis, with higher proportions of IL-2-only and IFN-γ/IL-2-secreting T-cells and lower proportions of IFN-γ-only-secreting T-cells.Fluorescence-immunospot is a quantitative, accurate measure of functional T-cell subsets; identification of cytokine-signatures of pathogen burden, distinct clinical stages of M. tuberculosis infection and long-term immune containment suggests application for treatment monitoring and vaccine evaluation

    Endogenous antigen processing drives the primary CD4+ T cell response to influenza.

    Get PDF
    By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and γ-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses
    corecore