27 research outputs found

    Expression of coxsackie and adenovirus receptor distinguishes transitional cancer states in therapy-induced cellular senescence

    Get PDF
    Therapy-induced cellular senescence describes the phenomenon of cell cycle arrest that can be invoked in cancer cells in response to chemotherapy. Sustained proliferative arrest is often overcome as a contingent of senescent tumor cells can bypass this cell cycle restriction. The mechanism regulating cell cycle re-entry of senescent cancer cells remains poorly understood. This is the first report of the isolation and characterization of two distinct transitional states in chemotherapy-induced senescent cells that share indistinguishable morphological senescence phenotypes and are functionally classified by their ability to escape cell cycle arrest. It has been observed that cell surface expression of coxsackie and adenovirus receptor (CAR) is downregulated in cancer cells treated with chemotherapy. We show the novel use of surface CAR expression and adenoviral transduction to differentiate senescent states and also show in vivo evidence of CAR downregulation in colorectal cancer patients treated with neoadjuvant chemoradiation. This study suggests that CAR is a candidate biomarker for senescence response to antitumor therapy, and CAR expression can be used to distinguish transitional states in early senescence to study fundamental regulatory events in therapy-induced senescence

    Contribution of Efflux to the Emergence of Isoniazid and Multidrug Resistance in Mycobacterium tuberculosis

    Get PDF
    Multidrug resistant (MDR) tuberculosis is caused by Mycobacterium tuberculosis resistant to isoniazid and rifampicin, the two most effective drugs used in tuberculosis therapy. Here, we investigated the mechanism by which resistance towards isoniazid develops and how overexpression of efflux pumps favors accumulation of mutations in isoniazid targets, thus establishing a MDR phenotype. The study was based on the in vitro induction of an isoniazid resistant phenotype by prolonged serial exposure of M. tuberculosis strains to the critical concentration of isoniazid employed for determination of drug susceptibility testing in clinical isolates. Results show that susceptible and rifampicin monoresistant strains exposed to this concentration become resistant to isoniazid after three weeks; and that resistance observed for the majority of these strains could be reduced by means of efflux pumps inhibitors. RT-qPCR assessment of efflux pump genes expression showed overexpression of all tested genes. Enhanced real-time efflux of ethidium bromide, a common efflux pump substrate, was also observed, showing a clear relation between overexpression of the genes and increased efflux pump function. Further exposure to isoniazid resulted in the selection and stabilization of spontaneous mutations and deletions in the katG gene along with sustained increased efflux activity. Together, results demonstrate the relevance of efflux pumps as one of the factors of isoniazid resistance in M. tuberculosis. These results support the hypothesis that activity of efflux pumps allows the maintenance of an isoniazid resistant population in a sub-optimally treated patient from which isoniazid genetically resistant mutants emerge. Therefore, the use of inhibitors of efflux should be considered in the development of new therapeutic strategies for preventing the emergence of MDR-TB during treatment

    Genistein-supplemented diet decreases malaria liver infection in mice and constitutes a potential prophylactic strategy

    Get PDF
    Contains fulltext : 70187.pdf (publisher's version ) (Open Access)In tropical regions millions of people still live at risk of malaria infection. Indeed the emergence of resistance to chloroquine and other drugs in use in these areas reinforces the need to implement alternative prophylactic strategies. Genistein is a naturally occurring compound that is widely used as a food supplement and is thought to be effective in countering several pathologies. Results presented here show that genistein inhibits liver infection by the Plasmodium parasite, the causative agent of malaria. In vitro, genistein decreased the infection rates of both mouse and human hepatoma cells by inhibiting the early stages of the parasite's intracellular development. Oral or intraperitoneal administration of genistein decreased the liver parasite load of P. berghei-infected mice. Moreover, mice fed on a genistein-supplemented diet showed a significant reduction in Plasmodium liver infection as well as a reduced blood parasitemia and partial protection from severe disease. Since genistein is a safe, low-cost, natural compound that can be used permanently in a diet, we propose its use as a prophylactic agent against malaria for endemic populations and long-time travelers
    corecore